API 571 RP: Damage Mechanisms Affecting Fixed Equipment in the Refining Industry 2 nd Edition, APRIL 2011 (Rev 01)(09.Apr.2017) | | | (Rev 01)(09.Apr.2017) | | | | | | | | | | | | | |---------|--------|---|--|---|--|---|---|---|---|--|--|---|--|--| | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | | П | 4 | General Damage | Mechanism - All Indust | ries | | | | | | | | | | | | П | 4.2 | Mechanical and I | Metallurgical Failure Me | echanisms | | | | | | | | | | | | 1 | 4.2.1 | Graphitization | Carbide phases may decompose into graphite nodules | Loss in strength, ductility,
and/or creep resistance | 800-1100 °F
(427 - 593 °C) | Some grades of carbon steel and 0.5Mo steels | Addition of 0.7%
Chromium | Chemistry, Stress, Temp., and
Time of exposure | Hot-wall piping and equipment in the FCC, catalytic reforming and coker units | Not visible or readily apparent | Use Chromium containing Alloys in operation above 800 °F | Metallography | Spheroidization | Change in microstructures.
Spheroidization tends to occur | | 2 | 4.2.2 | Softening
(Spheroidization) | Carbide phases may
agglomerate from normal plate-
like form to a spheroidal form | Loss in strength and/or
creep resistance | 850-1400 °F
(440 - 760 °C) | CS and Low Alloy Steel | Annealed steels,
Coarse grained structure | Metal chemistry, microstructure, exposure time, and temperature | Hot-wall piping and equipment in the FCC, catalytic reforming and coker units | Not visible or readily apparent | Minimizing long-term exposure to elevated temperatures | Metallography | Graphitization | preferentially above 1025°F (551°C),
while graphitization predominates
below this temperature | | 3 | 4.2.3 | Temper
Embrittlement | Metallurgical changes under
long time exposure in the temp.
range | Loss of toughness | 650-1070 °F
(343 - 577 °C) | 2.25Cr-1Mo low alloy steel,
3Cr-1Mo, and high-strength
low alloy,
Cr-Mo-V rotor steels | C-0.5Mo, 1Cr-0.5Mo and
1.25Cr-0.5Mo alloy steels | Alloy steel composition, thermal
history, metal temperature and
exposure time | Hydroprocessing units, catalytic
reforming units, FCC reactors, coker
and visbreaking units | Not visible or readily apparent, catastrophic brittle fracture | Existing Material: Use Pressureizing
sequence
New Material: Limit levels of Mn, Si,
P, Sn, Sb, As in base BM &
consumables | Installation of Test blocks for periodic toughness measurement, and process conditions monitoring | N/A | Upward shift in the ductile-to-brittle transition temperature | | 4 | 4.2.4 | Strain Aging | Under the combined effects of deformation and aging at an intermediate temp. | Increase in hardness and
strength with a reduction in
ductility and toughness | Intermediate
Temperature | Older vintage carbon steels
and C-0.5 Mo low alloy steel | Steels made by BOF and fully killed with aluminum | Steel composition and
manufacturing process determine
steel susceptibility | Thick wall vessels manufactured from
susceptible materials that have not
been stress relieved | Damage not to be identified as
strain aging until fracture | PWHT to weld repairs or Buttering,
careful pressurizing below brittle
fracture temp. | Inspection and monitoring are not used to control strain aging | Dynamic strain aging, Blue
brittleness | BOF: Basic Oxygen Furnace | | 5 | 4.2.5 | 885°F (475 °C)
Embrittlement | Metallurgical change that can
occur in alloys having ferrite
phase, as a result of exposure in
the temp. range | Loss in toughness | 600-1000 °F
(316 - 540 °C) | 400 Series SS (e.g., 405, 409,
410, 4105, 430 and 446),
Duplex stainless steels such as
Alloys 2205, 2304 and 2507 | Low ferrite or non-ferritic alloys, | Alloy composition, particularly
chromium content, amount of
ferrite phase, and operating
temperature | any unit where susceptible alloys
exposed to the embrittling
temperature range | Not readily apparent with
metallography, but can be
identified by an increase in
hardness | Use low ferrite or non-ferritic alloys,
Reversed by de-embrittling heat
treatment at 1100 °F or higher | Impact or bend testing | N/A | Damage is cumulative and results from
the precipitation of an embrittling
intermetallic phase that occurs most
readily at appr. 885°F | | 6 | 4.2.6 | Sigma Phase
Embrittlement | Formation of a metallurgical phase known as sigma phase as a result of high temp. exposure | Loss of fracture toughness | 1000-1700 °F
(538-927 °C) | Ferritic and
martensitic SS,
300 SS (HK,HP),
400 SS (430,440),
Duplex SS | SS (<17% Cr),
Low Ferrite contents | Alloy composition, time and temperature | FCC Regenerator service,
SS weld overlays and tube-to-tubesheet
attachment welds
SS heater tubes | Not visible or readily apparent.
appears in the form of cracking,
Particularly at welds or in areas of
high restraint | Use alloys that are resistant to sigma formation or to avoid exposing the material to the embrittling range | Metallographic examination and impact testing | N/A | Precipitation of a hard, brittle
intermetallic compound that can also
render the material more susceptible
to intergranular corrosion | | 7 | 4.2.7 | Brittle Fracture | Sudden rapid fracture under
stress
(residual or applied) | Material exhibits
little or no evidence of
ductility or plastic
deformation | Below ductile-to-
brittle transition
temperature | Carbon steels and low Alloy,
SS 400 series | Material with controlled
chemical composition,
special heat treatment
and impact test verified | Fracture toughness,
amount of stresses, flaw size,
ductile-to-brittle transition
temperature | Thick wall equipment, alkylation units, olefin units and polymer plants | Straight and non-branching
cracks. Fracture surface will be
composed largely of cleavage,
with limited intergranular
cracking | Controlling the operating conditions (pressure, temp.), Perform PWHT | Check for pre-existing flaws/defects. | Temper Embrittlement,
Strain Aging
embrittlement, 885°F
Embrittlement, Sigma
embrittlement | Brittle fracture is an "event" driven
damage mechanism
Main concern is for brittle fracture
during startup, shutdown, or hydrotest
/tightness testing | | 8 | 4.2.8 | Creep and Stress
Rupture | Time dependent deformation of stressed components | Deformation leads to
damage that may eventually
lead to a rupture | High temperatures | All metals and alloys | N/A | Material, load, and temperature | Heater tubes in fired heaters, hot-wall catalytic reforming reactors and furnace tubes | Bulging before final
fracture | Avoiding stress concentrators, minimize temperatures | A combination of techniques (UT, RT,
EC, dimensional measurements and
replication) | Reheat cracking | Increase of about 25°F (12°C) or an increase of 15% on stress can cut the remaining life in half or more, depending on the alloy | | 9 | 4.2.9 | Thermal Fatigue | Cyclic stresses caused by variations in temperature | Relative movement or
differential expansion is
constrained, particularly
under repeated thermal
cycling | Temperature swings
exceeds about 200°F
(93°C) | All materials of construction | N/A | Magnitude of the temperature
swing and the frequency
(number of cycles) | Mix points of hot and cold streams, coke drum skirts, | Surface cracks
, "Dagger-shaped",
transgranular, and oxide filled | Best prevented through design and operation to minimize thermal stresses and thermal cycling | Visual examination, MT and PT, SWUT | Corrosion fatigue,
Dissimilar metal weld
cracking | Thermal fatigue cracks propagate transverse to the stress, Differntial expansion of bimetallic welds | | 10 | 4.2.10 | Short Term
Overheating – Stress
Rupture | Permanent deformation
occurring at relatively low
stress levels as a result of
localized overheating | Bulging and eventually failure by stress rupture. | N/A | All fired heater tube materials
and common materials of
construction | N/A | Temperature, time and stress | All boiler and fired heater tubes,
Furnaces | Localized deformation or bulging
on the order of 3% to 10% or
more, Ruptures are
characterized
by open "fishmouth" | Minimize localized temp.
excursions, minimize hot spots and
localized overheating | Visual observation, IR monitoring | Creep/stress rupture | Time to failure will increase as internal pressures or loading decrease | | 11 | 4.2.11 | Steam Blanketing | When the heat flow balance is disturbed, individual bubbles join to form a steam blanket, a condition known as Departure From Nucleate Boiling (DNB) | Rupture can occur rapidly,
as a result of short term
overheating | N/A | Carbon steel and low alloy
steels | N/A | Heat flux and fluid flow | All steam-generating units i.e. fired
boilers, waste heat exchangers,
superheaters and reheaters | Open burst with the fracture
edges drawn to a near knife-edge,
severe elongation of the grain
structure due to the plastic
deformation | Minimize flame impingement,
Proper BFW treatment,
Tubes should be visually inspected
for bulging | Burners should be properly maintained to prevent flame impingement | Caustic corrosion (caustic
gouging),
Short term overheating | The flow of heat energy through the wall of the tube results in the formation of discrete steam bubbles (nucleate boiling) on the ID surface. The moving fluid sweeps the bubbles away | | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | |---------|--------|--|---|---|---|---|---|---|---|--|--|---|--|---| | 12 | 4.2.12 | Dissimilar Metal
Weld (DMW)
Cracking | Cracking of dissimilar metal
welds occurs in the ferritic
side of a weld between an
austenitic and a ferritic material
operating at high temp. | Cracking can result from
creep damage, from fatigue
cracking, from
sulfide stress cracking or
hydrogen disbonding | High temperatures | Carbon Steel and low alloy
steel, material combinations
that have widely differing
thermal expansion
coefficients | N/A | Type of filler metal, heating and cooling rate, metal temp., time at temp., weld geometry and thermal cycling | Clad pping, Hydroprocessing exchanger inlet and outlet piping etc. | Cracks form at the toe of the weld in the heat-affected zone of the ferritic material | Joints of Nickel base filler metals
and CS | 100% PT after buttering, 100% UT on
butter layer after PWHT, 100% RT,
100% UT, PMI | Thermal fatigue, corrosion
fatigue, creep, and sulfide
stress cracking | Cracking can occur due to different
coefficients of thermal expansion
between ferritic and austenitic which
differ by about 25 to 30% or more. | | 13 | 4.2.13 | Thermal Shock | High and non-uniform thermal
stresses develop over a
relatively short time in a piece
of equipment due to
differential expansion or
contraction | A form of thermal fatigue
cracking | High temperatures | All metals and alloys | N/A | Magnitude of temperature differential and the coefficient of thermal expansion of the material | FCC, cokers, catalytic reforming and
high severity hydroprocessing units | Surface initiating cracks may also appear as "craze" cracks | Prevent interruptions in the flow of
high temp. lines, Install thermal
sleeves to prevent liquid
impingement, Review hot/cold
injection points | Highly localized and difficult to locate,
PT and MT can be used to confirm
cracking | Thermal fatigue | Thermal shock usually occurs when colder liquid contacts a warmer met surface | | 14 | 4.2.14 | Erosion/Erosion –
Corrosion | Erosion is the mechanical rem
result of relative movement bet
liquids,
Erosion-corrosion is a the c
corrosion contributes to erosion
or scales, or by exposing the
corrosion under the combin | tween, or impact from solids,
vapor.
damage that occurs when
by removing protective films
e metal surface to further
ned action of erosion and | N/A | All metals, alloys and refractories | N/A | Velocity and concentration of
impacting medium, the size and
hardness of impacting particles,
the hardness and corrosion
resistance of material, and the
angle of impact | All types of equipment exposed to moving fluids | Localized loss in thickness in the form of pits, grooves, guilles, waves, rounded holes and valleys | Improvements in design involve
changes in shape, geometry and
materials selection | Visual examination , UT checks or RT
for metal loss, IR scans are used to
detect refractory loss | Cavitation, liquid impingement erosion, fretting | Susceptible locations: Bends, elbows
tees and reducers; downstream of
letdown valves and block valves;
pumps; blowers; propellers; impeller
agitators; agitated vessels; heat
exchanger tubing; etc. | | 15 | 4.2.15 | Cavitation | Formation and instantaneous collapse of innumerable tiny vapor bubbles | Cavitation is a form of erosion | N/A | Copper and brass, cast iron,
carbon steel, low alloy steels,
300 Series SS, 400 Series SS
and nickel base alloys | N/A | Inadequate NPSH, Temp.
approching to Boiling Point,
presence of solid or abrasive
particles | Pump casings, pump impellers (low
pressure side) and in piping
downstream of orifices or control
valves | Sharp-edged pitting but may also have a gouged appearance in rotational components | Avoid conditions that allow the absolute pressure to fall below the vapor pressure of the liquid or by changing the material properties | Acoustic monitoring, VT, UT, RT | Liquid impingement or erosion | Damage occurs only in localized low pressure zones | | 16 | 4.2.16 | Mechanical Fatigue | Exposed to
cyclical stresses for an
extended period, often
resulting in sudden, unexpected
failure | Stresses can arise from
either mechanical loading or
thermal cycling and are
typically well below the yield
strength of the material | N/A | All engineering alloys | CS &Ti: These materials
exhibit an endurance
limit below which fatigue
cracking will not occur,
regardless of the number
of cycles | Geometry, stress level, number of cycles, and material properties | Thermal Cycling: Coke drums, auxiliary
boiler, water washing systems,
Mechanical Loading:Pressure Swing
Absorbers, steam reducing stations | "Clam shell" type fingerprint that
has concentric rings
called "Beach marks" emanating
from the crack initiation site | Good design, generous radius along
edges and corners, good fitup,
reomove defects like burs or lips,
grinding marks etc | PT, MT and SWUT,
VT of small diameter pipin,
Vibration monitoring | Vibration induced fatigue | Ratio of endurance
limit over UTS is typically between 0.
and 0.5,
Number of cycles 106 -107 | | 17 | 4.2.17 | Vibration-Induced
Fatigue | Cracks are produced as the result of dynamic loading due to vibration, water hammer, or unstable fluid flow | Form of mechanical fatigue | N/A | All engineering materials | N/A | Amplitude, Frequency of vibration, and fatigue resistance | Socket welds and small bore piping at
or near pumps, Small bore bypass lines,
Small branch connections, Safety relief
valves, failure of the refractory and/or
the anchoring system | Crack initiating at a point of high
stress or discontinuity such as a
thread or weld joint | Design and the use of supports,
Install gussets or stiffeners on Small
Bore Piping (SBP) | Visible signs of vibration, pipe
movement or water Audible sounds of
vibration,PT, MT | Mechanical fatigue,
Refractory degradation | A lack of or excessive support or
stiffening allows vibration and possib
cracking. Heat exchanger tubes may l
susceptible to vortex shedding | | 18 | 4.2.18 | Refractory
Degradation | Thermal insulating and erosio
susceptible to various I
damage (cracking, spalling and
due to oxidation, sulfidation a
mechan | forms of mechanical
erosion) as well as corrosion
and other high temperature | N/A | Insulating
ceramic fibers,
castables, refractory brick
and plastic refractories | N/A | Refractory selection, design and installation | FCC reactor regenerator vessels, piping, cyclones, slide valves and internals; in fluid cokers; cold shell catalytic reforming reactors; waste heat boilers | Signs of excessive cracking,
spalling or lift-off from the
substrate, washed away or
thinned | Proper selection of refractory,
anchors and fillers and their proper
design and installation | Visual inspection during shutdowns, IR to monitor for hot spots | Oxidation,
Sulfidation,
Flue gas dew point
corrosion | Refractory type and density must be selected to resist abrasion and erosic | | 19 | 4.2.19 | Reheat Cracking | Cracking of a metal due to stres
Heat Treatment (PWHT) of
tempera | or in service at elevated | Above
750°F (399 °C) | Low alloy steels, 300 Series SS
and nickel base alloys such as
Alloy 800H | N/A | Composition of Material, grain size, residual stresses from fabrication, section thickness, notches and stress concentrators, metal strengths etc. | Heavy wall vessels in areas of high
restraint including nozzle welds and
heavy wall piping, HSLA steels are very
susceptible to reheat cracking | Intergranular and can be surface
breaking or embedded depending
on the state of stress and
geometry | Minimize restraint during welding and PWHT | UT & MT for CS,
UT & PT for SS,
Embedded cracks: UT | Stress relief cracking and
stress relaxation
cracking | More likely to occur in
thicker sections and higher strength
materials | | 20 | 4.2.20 | Gaseous Oxygen-
Enhanced Ignition
and Combustion | The spontaneous ignition or o
nonmetallic components can re
certain oxygen-enriched | esult in fires and explosions in | N/A | CS, Titanium alloys,
Plastics, rubbers, and
hydrocarbon lubricants | SS, Copper alloys (with
>55% Cu & >50% Ni) | Pressure, Oxygen content, line
velocity, component thickness,
temperature, design and piping
configuration, cleanliness | Valves, regulators, and other impingement areas are potentially vulnerable. Non-metals such as those used for seats and seals, are easier to ignite than metals | External heat damage (glowing
pipe or heat tint) is a strong
indication of an internal fire | Keep systems clean,
Maintain velocity within
recommended limits, use only
"oxygen compatible" lubricants | Tell-tale signs of a minor fire such as
external heat damage, or signs of
malfunctioning valves | N/A | Avoid velocities that are nominally above 100 feet/second (30 m/sec) i gaseous oxygen | | | 4.3 | | Occurs at the junction of dissi | | | All — shall wish ab | Less difference in | Three conditions must be met; | Any unit where there is a conductive fluid and alloys are coupled, Heat | Generalized loss in thickness or
may have the appearance of a | Good design | Minus in an adding and UT Abinham | | The farther the alloys are apart in t | | 21 | 4.3.1 | Galvanic Corrosion | joined together in a suitable el
aqueous environment, or s | | N/A | All metals with the exception
of most noble metals | Galvanic series | Electrolyte, Two different
materials, An electrical
connection | exchangers, Buried pipelines, electrical
transmission support towers and ship
hulls | crevice, groove or pitting
corrosion, depending on the
driving force, conductivity | Coatings can be helpful, but the
more noble material should be
coated | Visual inspection and UT thickness gauging | Soil corrosion | table, the higher the driving force for
corrosion | | 22 | 4.3.2 | Atmospheric
Corrosion | Occurs from moisture asso
conditions. Marine environ
industrial environments with airi
seve | ments and moist polluted
borne contaminants are most | Corrosion rates
increase with temp.
up to about 250 °F
(121 °C) | Carbon steel, Low alloy steels
and Copper Alloyed
aluminum | N/A | Physical location (industrial,
marine, rural); moisture,
designs; temperature; presence of
salts, Sulfur, dirt | Equipment with low temp. to allow
moisture, poor condition of paint,
bimetallic connections | General or localized los in thickness, Iron oxide (red rust) | Surface preparation and proper coating application | VT and UT | Corrosion under insulation | Dry rural environments cause very lit corrosion | | 23 | 4.3.3 | Corrosion Under
Insulation (CUI) | Corrosion of piping, pressu
components resulting fro
insulation or f | m water trapped under | 10 (-12) to 350 (175)
for CS & LAS
140 (60) to 400 (205)
for SS (Aus., Dup.) | Carbon steel, low alloy steels,
300 Series SS, and duplex
stainless steels | N/A | Design of insulation system, insulation type, temperature and environment | Vapor barriers, weatherproofing or mastic, at insulation termination points such as flanges, Deadlegs, supports | Localized pitting or thickness loss,
Carbuncle type pitting | Appropriate paints/coatings and maintaining the insulation/sealing/vapor barriers to prevent moisture ingress | VT, UT: thickness, Profile RT: Small
Bore piping, Neutron backscatter: wet
insulation, Deep penetrating eddy-
current, IR thermography
Guided wave UT | Atmospheric corrosion, oxidation and chloride SCC | Corrosion becomes more severe at metal temp. between the boiling poi 212°F (100°C) and 350°F (121°C) | | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | |---------|--------|---|---|--|---|--|--|--|--|--|---|---|---|---| | 24 | 4.3.4 | Cooling Water
Corrosion | Caused by dissolv
organic compounds or n | | Fresh water: >60 °C Brakish & Salt water: >46 °C scaling potential exists | Carbon steel, all grades of
stainless steel, copper,
aluminum, titanium and
nickel base alloys | N/A | Temperature, type of water
(fresh, brackish, salt water) and
the type of cooling system,
oxygen content, and velocities | Water-cooled heat exchangers and cooling towers in all applications across all industries | General corrosion,
pitting corrosion, MIC, stress
corrosion cracking and fouling | Proper design, operation and chemical treatment | Periodic calculation of U-factors,
Ultrasonic flow meters,
EC or IRIS inspection of tubes | MIC, CSCC,
Galvanic corrosion | Velocities below about 3 fps (1 m/s) are likely to result in fouling | | 25 | 4.3.5 | Boiler Water
Condensate
Corrosion | General corrosion and pittin
condensate re | | N/A | Carbon steel, some low alloy
steel, some 300 Series SS and
copper based alloys | N/A | Dissolved gas (oxygen and or
carbon dioxide), pH, temp.,
quality of the feedwater, and the
specific feedwater treating system | external treatment system, deaerating equipment, feedwater lines, pumps, stage heaters and economizers as well as the steam generation system on both the water and fire sidesand the condensate return system | O ₂ corrosion(closed heaters and
economizers) tends to be a
pitting,
CO ₂ corrosion (condensate
return) tends to be a "smooth
grooving" | O ₂ scavenging treatments: sodium
sulfite or hydrazine
CO ₂ : Fe ₃ O ₄ or amine inhibitor | Water analysis : pH, conductivity,
chlorine or residual biocide, TDS | CO ₂ corrosion,
Corrosion fatigue,
Erosion/erosion-corrosion | Dissolved gases, oxygen and carbon
dioxide, which lead to oxygen pitting
corrosion and carbonic acid corrosion
respectively | | 26 | 4.3.6 | CO₂ Corrosion | The acid may lower the pH ar
promote general corrosion and, | en CO ₂ dissolves in water to form carbonic acid (H ₂ CO ₃). e acid may lower the pH and sufficient quantities may obte general corrosion and/or pitting corrosion of carbon steel g, SO ₃ , HCI gases and the water vapor in
the flue gas will condense to form suffurous acid. sulfuric acid and | | Carbon steel and low alloy
steels | Cr ≥ 12%,
300 Series SS, 400 Series
SS and duplex SS | Partial pressure of CO ₂ , pH and temperature | Boiler feedwater and condensate
systems, Overhead systems of
regenerators in CO ₂ removal plants | Localized thinning and/or pitting,
Deep pitting and grooving in
areas of turbulence | Corrosion inhibitors, pH above 6,
Operating coditions to be
maintained | General or local loss: VT, UT and RT,
Weld seams: Angle probe UT or RT,
Water analyses (pH,Fe, etc.) | Boiler water condensate
corrosion and Carbonate
cracking | Increasing partial pressures of CO ₂ result in lower pH condensate and higher rates of corrosion. | | 27 | 4.3.7 | Flue-Gas Dew-Point
Corrosion | 2 2 0 | us acid, sulfuric acid and | Low temperatures | Carbon steel, low alloy steels
and 300 Series SS | N/A | Concentration of sulfur and chlorides, operating temperature | All fired process heaters and boilers
that burn fuels containing sulfur, Heat-
Recovery Steam Generators (HRSG's) | H ₂ SO ₄ corrosion:
Broad, shallow pits,
SSC will have surface
breaking cracks like crazed | Maintain Temp. above dewpoint of H ₂ SO ₄ | Wall-thickness by UT,
SCC of 300 Series SS using VT & PT | HCL corrosion,
Chloride stress corrosion
cracking | Dewpoint:
H ₂ SO ₄ 280°F (138°C)
HCl 130°F (54°C) | | 28 | 4.3.8 | Microbiologically
Induced Corrosion
(MIC) | caused by living organisms such
is often associated with the pr
organic su | resence of tubercles or slimy | 0 - 235 °F
(-17 to 113 °C) | Carbon and low alloy steels,
300 Series SS and 400 Series
SS, aluminum, copper and
some nickel base alloys | N/A | Stagnant water or low-flow,
oxygen, light or dark, high salinity,
pH range of 0 to 12, temperature | MIC is most often found in heat
exchangers, bottom water of storage
tanks, piping with stagnant or low flow,
and piping in contact with some soils,
Fire water systems | Localized pitting under deposits
or tubercles, Cup-shaped pits
within pits in carbon steel or
subsurface cavities in stainless ste | Biocides such as chlorine, bromine,
ozone, UV light.
Minimize low flow or stagnant
zones | Measuring biocide residual, microbe
counts and visual appearance, loss of
duty of a heat exchanger, Foul smelling
water | Cooling water corrosion | All organisms require a source of carbon, nitrogen and phosphorous for growth | | 29 | 4.3.9 | Soil Corrosion | Deterioration of metals expose corro | | N/A | Carbon steel, cast iron and ductile iron | N/A | Temp., moisture and oxygen
availability, soil resistivity, soil
type, cathodic protection, stray
current drainage, coating type,
age | Underground piping and equipment as
well as buried tanks and the bottoms of
above ground storage tanks, Ground
supported metal structures | External thinning with localized losses due to pitting | Use of special backfill, coatings and cathodic protection | The structure to soil potential, inline inspection devices, guided UT tools, indirectly by pressure testing, or visually by evaluation | Galvanic corrosion | The most effective protection is a
combination of a corrosion resistant
coating and a cathodic protection
system | | 30 | 4.3.10 | Caustic Corrosion | Localized corrosion due to the
alkaline salts that us
evaporative or high he | sually occurs under | Above
150 °F (66 °C) | Carbon steel, low alloy steels
and 300 Series SS | 400 and some Nickel
base Alloys | Caustic (NaOH or KOH) | Boilers and steam generating
equipment including heat exchangers,
preheat exchangers, furnace tubes and
transfer lines | localized metal loss as grooves or
locally thinned areas under
insulating deposits | Proper design, Reducing the amount
of free caustic, Adequate water
flooding | UT Thickness gauging,
UT scans and radiography,
Injection points inpection,
visual inspection with the use a
boroscope | Also referred to as caustic gouging or ductile gouging | Very high corrosion rates above 200°F (93°C) | | 31 | 4.3.11 | Dealloying | One or more constituents of an
alloy are preferentially attacked
leaving a lower density
(dealloyed) often porous
structure | Mechanical properties of the
dealloyed material are
significantly degraded | N/A | Copper alloys (brass, bronze,
tin) as well as Alloy 400 and
cast iron | N/A | Composition of the alloy and
exposure conditions
including temperature, degree of
aeration, pH and exposure time | Underground cast iron piping,
Heat exchanger tubing (brass, Al brass),
Boiler feedwater piping systems and
afterboiler components | Color change or a deep etched (corroded) appearance, Uniform through the cross-section (layer-type) or it can be localized (plug-type) | Addition of certain alloying
elements to resist dealloying,
Altering the exposure
conditions | Color change, Metallography, Acoustic
techniques (loss of "metallic ring") and
ultrasonic attenuation, Fitness-For-
Service (FFS) | Dezincification,
Destannification,
Denickelification,
Dealuminification,
Graphitic corrosion,
Selective leaching | Dealloying in brasses is visually evident
by a reddish, copper color instead of
the yellow brass color | | 32 | 4.3.12 | Graphitic Corrosion | Dealloying in which the iron
matrix is corroded, leaving
corrosion products and porous
graphite | Loss of strength, ductility and density | Below
200 °F (93 °C) | Gray cast iron, nodular and malleable cast irons | White iron is not subject
to this damage because
there is no free graphite | Temperature, moisture, degree of
aeration, low pH and exposure
time | soft water, salt water, mine waters,
dilute acids and in underground
piping, as well as in boiler feedwater
equipment, Fire water system | Widespread or localized,
may not be noticeable VT,
Damaged areas will be soft and
easily gouged with a knife or
hand tools | Internal GC: coatings and/or cement
linings
External GC: external coatings or
cathodic protection | Acoustic techniques (loss of "metallic
ring") and ultrasonic attenuation,
Hardness test | Selective leaching,
Dealloying | Cast irons are comprised of graphite
particles embedded in an iron matrix,
Graphitic corrosion may affect
adjacent components by causing
galvanic corrosion | | | 4.4 | High Temperatur | e Corrosion [>400°F (20 | 04°C)] | | | | | | • | | | | | | 33 | 4.4.1 | Oxidation | Oxygen reacts with carbon st
temperature converting t | | Significant at 1000 °F
(538 °C) | carbon steel and low alloy
steels, 300 Series SS, 400
Series SS and nickel base
alloys | Chromium content of the material | Metal temperature and alloy composition | Fired heaters and boilers, combustion
equipment, piping and
equipment that operates in high
temperature environments when metal
temperatures exceed about
1000°F (538°C) | CS and Alloys: General thinning
300 Series SS and nickel alloys:
Generally have a very thin dark
scale | Upgrading to a more resistant alloy,
Chromium is the primary alloying
element that affects resistance to
oxidation | Operating conditions monitoring,
tubeskin thermocouples and/or
infrared thermography, External
ultrasonic thickness
measurements | N/A | Rates of metal loss increase with increasing temperature | | 34 | 4.4.2 | Sulfidation | Corrosion of carbon steel and or
reaction with sulfur
temperature environments.
accelerates corrosion. T
known as sulfi | compounds in high
The presence of hydrogen
his mechanisms is also | Begins at metal
temperatures above
500 °F (260 °C) | Carbon steel and low alloy
steels, 300 Series SS and 400
Series SS, Nickel base alloys,
Copper base alloys | Chromium content of the material | Composition, temperature and concentration of corrosive sulfur compounds. | Crude, FCC, coker, vacuum, visbreaker
and hydroprocessing
units Heaters fired with oil, gas, coke,
Boilers and high temperature
equipment | Uniform thinning but can also
occur as localized corrosion or
high velocity erosion-corrosion
damage, A sulfide scale will cover
the surface of components | Upgrading to a higher chromium
alloy, solid or clad 300 or 400 Series
SS | Operating conditions monitoring for
sulfur level, tubeskin thermocouples
and/or infrared thermography,
External ultrasonic thickness
measurements, Proactive and
retroactive PMI | Sulfidic corrosion | Sulfide scale on the surface of the component offers varying degrees of protection depending on the alloy and the severity of the process stream | | 35 | 4.4.3 | Carburization | Carbon is absorbed into a
material at elevated temp.
while in contact with a
carbonaceous material or
carburizing environment | Loss of high temp. creep
ductility, loss of ambient
temp. mechanical
properties, loss of
weldability, and corrosion
resistance | Above 1100 °F
(593 °C) | Carbon steel and low alloy
steels, 300 & 400 Series SS,
cast stainless steels, nickel
base alloys (e.g., Alloys 600
and 800) and HK/HP alloys. | Chromium content of the material | Carburizing environment, High
temp., Susceptible material, High
gas phase carbon activity and low
oxygen potential | Fired heater tubes, Coke deposits,
Ethylene pyrolysis and steam reformer
furnaces | Substantial increases in hardness
and loss in ductility, Volumetric
increase, Increase in level of
ferromagnetism | Select alloys strong surface oxide or
sulfide film formers,Reduce the
carbon activity through lower temp.
and higher oxygen /sulfur partial
pressures | Hardness testing and field
metallography,
Cracking: RT, UT and some magnetic
techniques | A severe
form of
carburization known as
metal dusting | Sulfur inhibits carburization and is
often added in the process stream in
small amounts in steam/gas cracking in
olefin and thermal hydrodealkylation
units | | 36 | 4.4.4 | Decarburization | The removal of carbon and carbides leaving only an iron matrix | Lose of room temp. tensile strength and creep strength | N/A | Carbon steels and low alloy steels | Chromium and
Molybdenum contents
of the material | Time, temperature and low carbon activity | Hydroprocessing or catalytic reforming units, well as fired heater tubes, | Damage occurs on the surface
exposed to the gas environment,
The decarburized layer will be
free of carbide phases. Carbon
steel will be pure iron | By controlling the chemistry of the
gas phase and alloy selection, Alloy
steels with Cr and Mo are more
resistant | Field Metallography and Replication
(FMR), Decarburization results in a
softening that can be confirmed by
hardness testing | High Temperature
Hydrogen Attack (HTHA) | Shallow decarburization can slightly decrease the strength of the material, but has no detrimental effect on the overall performance of the component | | _ | | | | | | | | ı | . | ı | | ı | | | |-----------|-------|--|--|--|---|---|---|---|--|---|---|--|--|--| | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | | 37 | 4.4.5 | Metal Dusting | Form of carburization resulting in
which occurs in carburizing gar
containing carbon and hydrog
surface and may contain | ses and/or process streams
en. Pits usually form on the | 900 to 1500 °F
(482 to 816 °C) | Low alloy steels, 300 Series
SS, nickel base alloys and
heat resisting alloys | There is currently no
known metal alloy that is
immune to metal dusting
under all conditions | Process stream composition, operating temperature and alloy composition | fired heater tubes, thermowells and
furnace components, catalytic
reforming unit heater tubes, coker
heaters, gas turbines, methanol
reforming unit outlet piping | LAS: small pits filled with a
crumbly residue of metal oxides
and carbides
SS &HAS: local, appearing as
deep, round pits | Addition of Sulfur to form
protective sulfide layer, Aluminum
diffusion treatment | Compression wave ultrasonic testing,
RT techniques can be employed to look
for pitting and wall thinning, VT if
accessable, Filtering cooled furnace
effluent | Catastrophic carburization | | | 38 | 4.4.6 | Fuel Ash Corrosion | High temperature wastage of i
contaminants in the fuel form de
surfaces of fired heaters, boi
resulting molten salts (slags) die
enhance the transport of oxygen
iron oxide at the expense of th | eposits and melt on the metal
lers and gas turbines. The
ssolve the surface oxide and
to the surface to re-form the | Below the Melting
Point of contamiant | All conventional alloys used for process heater and boiler | Alloys of the 50Cr-50Ni
family | Concentration of molten salt
forming contaminants, metal
temperature and alloy
composition | Fired heater or gas turbine utilizing fuels
with the aforementioned
contaminants. | Severe metal loss associated with slagging, "alligator-hide appearance" | Blending or changing fuel sources,
Proper burner design and burner
management, injecting special
additives into the fuel | Visual inspection, Tubes need to be grit
blasted in order to remove the
tenacious glass-like ash deposit. UT
examination may be useful to measure
loss of thickness. | Hot corrosion, hot ash
corrosion, molten salt
corrosion, oil ash
corrosion and coal ash
corrosion are used to
describe this mechanism | Corrosion typically occurs with fuel oil
or coal that is contaminated with a
combination of suffur, sodium,
potassium and/or vanadium | | 39 | 4.4.7 | Nitriding | A hard, brittle surface layer will develop on some alloys due to exposure to high temp, process streams containing high levels of nitrogen compounds such as ammonia or cyanides, particularly under reducing conditions | | Above 600 °F (316 °C)
and becomes severe
above 900 °F (482 °F) | Carbon steels, low alloy
steels, 300 Series SS and 400
Series SS | Nickel base alloys are
more resistant | Temperature, time, partial pressure of nitrogen and metal composition. | Methane-reformers, steam gas
cracking (olefin plants) and ammonia
synthesis plants | Dull, dark gray appearance. Very
high surface hardness, needle-like
particles of iron nitrides (Fe ₃ N or
Fe ₄ N) | Changing to more resistant alloys
with 30% to 80% nickel, | A change in surface color, Hardness
testing, , Metallography, EC testing,
PT, RT and UT for cracking | Carburization and metal dusting | Nitrided layers are magnetic | | Ш | 4.5 | Environment – A | ssisted Cracking | | | | | | | | | | | | | 40 | 4.5.1 | Chloride Stress
Corrosion Cracking
(CI-SCC) | Surface initiated cracks caused
under the combined action of te
an aqueous chloride environmen
oxygen increases prop | nsile stress, temperature and
nt. The presence of dissolved | Above 140 °F (60 °C) | All 300 Series SS highly
susceptible,
Duplex stainless steels more
resistant. | Nickel base alloys,
Carbon steels, low alloy
steels and 400 Series SS | Chloride content, pH, temp.,
stress, presence of oxygen and
alloy composition | All 300 Series SS piping and pressure
vessel components, Cracking in water-
cooled condensers and in crude tower
overhead condensers, Drains in
hydroprocessing units, Bellows and
instrument tubing, Cracking in boiler
drain lines | Surface breaking cracks process
side or externally under
insulation, branches and craze-
cracked, branched transgranular
cracks, brittle appearance | resistant materials of construction,
use low chloride content waterfor
hydrotest, avaoid stagnation of
chlorides, PWHT | Visually, PT or phase analysis EC
techniques are the preferred methods.,
UT, RT is not sufficiently sensitive to
detect cracks except in advanced
stages | Caustic SCC and polythionic acid SCC | Increasing temperatures increase the
susceptibility to cracking, SCC usually
occurs at pH > 2.
External CI-SCC has also been a
problem on insulated surfaces when
insulation gets wet | | 41 | 4.5.2 | Corrosion Fatigue | Form of fatigue cracking in which cracks develop under the
combined effects of cyclic loading and corrosion. Cracking
often initiates at a stress concentration such as a pit in the
surface. Cracking can initiate at multiple sites | | N/A | All metals and alloys | N/A | Material, corrosive environment, cyclic stresses and stress raisers | i.Rotating Equipment
ii.Deaerators
iii.Cycling Boilers | Fracture is brittle and the cracks
are most often
transgranular,multiple parallel
cracks | More corrosion resistant materials,
PWHT, grinding weld contours
smooth, minimize the differential
expansion strains | Cracks: UT,MT,WFMT, EMATS techniques | Mechanical
fatigue,vibration induced
fatigue | Crack initiation sites include
concentrators such as pits, notches,
surface defects, changes in section
or fillet welds | | 42 | 4.5.3 | Caustic Stress
Corrosion Cracking
(Caustic
Embrittlement) | surface-initiated cracks that oc
exposed to caustic, primarily ad | | N/A | Carbon steel, low alloy steels
and 300 Series SS | Nickel base alloys | Caustic strength, metal temperature and stress levels | Piping and equipment that handles caustic, including H ₂ S and mercaptan removal units, | Propagates parallel to the weld in
adjacent base metal, spider
web
of small cracks, Cracking in 300
SS is transgranular | PWHT of CS:
1150°F (621°C), low-pressure steam
for steam out, Proper design and
operation of the injection system | Cracks: WFMT, EC, RT or ACFM
techniques
Crack depth: UT, external SWUT
Crack growth: AET
PT and RT for suitable for finding tight
cracks | Amine cracking and carbonate cracking | Increasing caustic conc. and increasing temp. increase the likelihood and severity of cracking. caustic conc. of 50 to 100 ppm are sufficient to cause cracking | | 43 | 4.5.4 | Ammonia Stress | Aqueous streams containing a
Corrosion Cracking (SCC) | | Any temperature | Copper alloys in aqueous
ammonia and/or ammonium
compounds | 90-10CuNi and 70-
30CuNi, 300 Series SS
and nickel base alloys are
immune | Copper: Residual stress, chemical
compound, pH >8.5, oxygen, Zinc
content > 15% | Copper-zinc alloy tubes in heat exchangers, | Copper: Surface breaking cracks
with bluish corrosion products,
cracks are either transgranular or
intergranular | Zinc content <15%, preventing the ingress of air | Monitor pH and ammonia of water
draw samples, tubes for cracking using
EC or visual inspection. Rolled area is
highly
susceptible. | N/A | | | | | Corrosion Cracking | Carbon steel is susceptible to 9 | SCC in anhydrous ammonia | In Steel Cracking has
been reported as low
as -27 °F(-33 °C) in
laboratory testing | Carbon steel in anhydrous
ammonia | N/A | Steel: Anhydrous ammonia with <0.2% water, air or oxygen, High residual stresses | Ammonia storage tanks, piping and
equipment in ammonia refrigeration
units as well as some lube oil refining
processes | Cracking will occur at exposed
non-PWHT welds and heat-
affected zones, Cracking is
primarily intergranular | Add water to the NH ₃ (0.2% min.),
effective PWHT, Use LS steels (<70
ksi), Weld hardness < 225 BHN | WFMT welds inside tanks, external UT shear wave inspection using TOFD, AET | 50,0490 | Low levels of oxygen (< 10 ppm) have
been reported to lead to cracking
under some conditions | | 44 | 4.5.5 | Liquid Metal
Embrittlement (LME) | Cracking that results when
certain molten metals come in
contact with specific alloys | Cracking can be very sudden
and brittle in nature | N/A | Carbon steel, low alloy steels,
high strength steels, 300
Series SS, nickel base alloys
and the copper alloys,
aluminum alloys and titanium
alloys | N/A | Metals in contact with low
melting point metals such as
zinc, mercury, cadmium, lead,
copper and tin. High tensile stress | Melted
zinc galvanizing, cadmium electrical
housings, tin or lead from solders.
Alloy 400, titanium or aluminum
exchanger components. | Brittle cracks | Protecting metal substrates from
coming into contact with the low
melting metal, e.g. galvanized steel
components should not be welded
to 300 Series SS | MT examination for ferritic steel and
PT examination for 300 Series SS and
nickel base alloys.
RT for exchanger pipes due to high
density of Mercury | Also know as Liquid Metal
Cracking (LMC) | Once cracking from LME has initiated, grinding out the affected area is not an acceptable fix | | 45 | 4.5.6 | Hydrogen
Embrittlement (HE) | Penetration of atomic
hydrogen can lead to brittle
cracking. It can occur during
manufacturing, welding | A loss in ductility of high strength | Ambient to about
300°F (149°C),
Effects decrease with
increasing temp. | Carbon steel and low alloy
steels, 400 Series SS,
Precipitation Hardenable (PH)
SS and some high
strength nickel base alloys | As strength increases,
susceptibility to HE
increases. | Hydrogen conc. within the steel,
strenght and micro structure of
steel, stress above the threshold | Piping and vessels in wet H ₂ S servicesin
FCC, hydroprocessing, amine, sour
water services, Storage spheres, Bolts
and springs made of HS steel, Cr-Mo
reactors, drums and exchanger shells in
hydroprocessing | Initiate sub-surface cracking, cracking is often intergranular | Use LS steels and PWHT to temper
the microstructure, improve
ductility and reduce
residual stresses and hardness.
Apply a protective lining, SS cladding
or weld overlay | Surface cracking inspection use PT, MT
or WFMT. UT may also be useful in
finding HE cracks. RT often is not
sufficiently sensitive to detect HE
cracks | Also know as Hydrogen
flaking, underbead
cracking, delayed cracking,
hydrogen assisted cracking | It can also occur or from services that
can charge hydrogen into the steel in
an aqueous, corrosive, or a gaseous
environment | | 46 | 4.5.7 | Ethanol Stress
Corrosion Cracking
(SCC) | Surface-initiated cracks caused by environmental cracking of carbon steel under the combined action of tensile stress and a fuel grade ethanol (FGE, ASTM D 4806) or FGE / gasoline blend environment | | N/A | All grades of carbon steel,
Alloys of aluminum, copper
and copper alloys, lead and
zinc | Other than Carbon Steel
and Al, Cu, Pb, Zn Alloys | High Stress, dissolved oxygen
content, water content between
0.1 and 4.5 vol%, FGE and
gasoline containing as little as 20
vol% FGE | Carbon steel storage tanks, rack piping,
and associated equipment, pipeline
used to transport FGE, | Cracks parallel to the
weld or transverse to the weld,
Cracks are branched and
intergranular, but also
transgranular | PWHT or by applying coatings,
Avoid the usage of lap seam welds,
Minimize cold working during
fabrication, Avoid designs with
highly localized tensile stresses | Methods for ethanol SCC inspection
are similar as for other types of SCC
e.g. WFMT, SWUT, ACFM.
EC is unproven as a method for
detection of ethanol SCC | Ethanol SCC is assumed to
be similar to other
reported in methanol and
various alkaline aqueous
solutions | Dissolved oxygen and the presence of variable stresses such as cyclic stress or component flexing, increase the propensity for cracking | | 47 | 4.5.8 | Sulfate Stress
Corrosion Cracking | Surface initiated cracks caused b
copper alloys in sulfate solu | | N/A | Some copper alloys | The 90/10 and 70/30
copper nickel alloys are
more resistant.
Non-copper based alloys
are immune | Stress levels, Sulfate chemical compounds, | Tubes in heat exchanger bundles in
overhead distillation systems, | Tubes show single or highly branched cracks on the surface. Transgranular cracks. Slow leaks as opposed to tube rupture | Periodic cleaning once every five
years, Use 90-10CuNi and 70-
30CuNi alloys | Heat exchanger tubes for cracking
using EC or visual inspection.
Physical bending of sample tubes | N/A | Cracking usually occurs over a period of many years, sometimes taking as long as 10 to 15 years to cause tube leaks. | | \square | | Refining Industry | Damage Mechanism | | | | | | | 10-1 | | | | 2 | | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | |---------|----------|--|---|--|---|---|---|---|---|---|---|---|--|---| | | 5.1.1 | Uniform or Local | zed Loss in Thickness P | henomena | | | | | | | | | | | | 48 | 5.1.1.1 | Amine Corrosion | Occurs principally on carbo
processes. Corrosion is not cau
results from dissolved acid gr
degradation products, Heat St
other contaminants. Corrosion of
tempera | used by the amine itself, but
gases (CO ₂ and H ₂ S), amine
gable Amine Salts (HSAS) and
rates increase with increasing | Temperatures above
about 220°F (104°C)
can result in acid gas
flashing | Carbon steel | 300 Series SS | Design and operating
practices,
the type of amine, amine
concentration,
contaminants, temperature and
velocity. | Crude, coker, FCC, hydrogen reforming,
hydroprocessing, and tail gas units,
regenerator reboiler and the
regenerator, lean/rich exchangers | Carbon steel and low alloy steels
uniform thinning, localized
corrosion or localized
underdeposit attack | Proper operation, upgrading to 300
Series SS or other corrosion
resistant alloys | Visual examination and UT thickness
measurement, UT scans or profile
radiography are used for external
inspection. Corrosion monitoring | Amine stress corrosion cracking | Aggressiveness from most to least as follows: (MEA), (DGA), (DIPA), (DEA), (MDEA). For CS, velocity limits are limited to 3 to 6 fps for rich amine and about 20 fps for lean amine | | 49 | 5.1.1.2 | Ammonium Bisulfide
Corrosion (Alkaline
Sour Water) | Aggressive corrosion occurring effluent streams and in units h | | 120 - 150°F
(49 - 66°C) | Carbon steel is less resistant | 300 Series SS, duplex SS,
aluminum alloys and
nickel base alloys are
more resistant | NH _a HS concentration, H ₂ S partial
pressure, velocity and/or localized
turbulence, pH, temperature,
Alloy composition and flow
distribution | Hydroprocessing Units, FCC Units, Sour
Water Strippers (SWS), Amine Units,
Delayed Coker | General loss in thickness,
localized under-deposit corrosion | Good design practices, Maintain
velocities within industry guidelines
of 10 to 20 fps for carbon steel. Use
Alloy e.g. 825, duplex SS at velocities
above 20 fps | Sampling and calculation bisulfide, UT scanning and/or RT profile thickness of high and low velocity areas, UT downstream of control valves, IRIS, RFEC and flux leakage steel air cooler tubes, EC inspect non-magnetic air cooler tubes | Erosion/erosion corrosion | Above 2 wt % NH _a HS, solutions are
increasingly corrosive | | 50 | 5.1.1.3 | Ammonium Chloride
Corrosion | Normally occurring under ammonium chloride or amine salt deposits, often in the absence of a free water phase | | Well above the water
dewpoint
[> 300°F (149°C)] | Increasing Resistance: Ca
steels < 300 Series SS < Alloys
825 < Alloys 625, C | 400 < duplex SS, 800, and | Concentration (NH ₃ , HCl, H ₂ 0 or
amine salts), temperature and
water availability | Crude Tower Overheads,
Hydroprocessing, Catalytic Reforming,
FCCU and coker fractionator overheads | Salts have a whitish, greenish or
brownish appearance, very
localized and results in pitting | Use of Filming amine inhibitors,
Limit chlorides, water wash may be
required | RT or UT thickness monitoring,
Corrosion probes or coupons can be
useful | HCl corrosion,
Chloride SCC | | | 51 | 5.1.1.4 | Hydrochloric Acid
(HCI) Corrosion | Aqueous HCl causes both general and localized corrosion and is very aggressive to most common materials of construction across a wide range of concentrations. The first water droplets that condense can be highly acidic (low pH) and promote high corrosion rates. | | N/A | All common materials of
construction used in
refineries | Alloy 400, titanium and
some other nickel base
alloys have good
resistance to dilute HCI
acid in many refinery
application | HCl acid concentration,
temperature and alloy
composition. The severity of
corrosion increases with
increasing HCl concentration and
increasing temperature | Crude Unit, Hydroprocessing Units,
Catalytic Reforming Units | CS & LAS: uniform thinning,
localized corrosion or
underdeposit attack.
300 SS & 400 SS: pitting
300 SS: may experience
chloride SSC | Reduce chloride in the feed,
Use nickel base alloys or titanium,
Minimize carryover of water and
chloride salts, | General thinning but may be highly localized, | Ammonium chloride
corrosion , Chloride SCC | Carbon steel and low alloy steels are subject to excessive corrosion when exposed to any concentration of HCl acid that produces at pH below about 4.5 | | 52 | 5.1.1.5 | High Temp H ₂ /H ₂ S
Corrosion | Presence of hydrogen in H ₅ S-containing hydrocarbon streams increases the severity of high temperature sulfide corrosion | | Above about 500°F
(260°C) | Increasing resistance: Carbor
400 Series SS < 3 | | Hydrogen, the concentration of H ₂ S and the alloy composition | Hydroprocessing units such desulfurizers, hydrotreaters and hydrocracking units | Uniform loss in thickness from
the process side and is
accompanied by the formation of
an iron sulfide scale | Use alloys with high chromium content | UT, VT and RT thickness readings | High temperature sulfidation | Scale is about 5 times the volume of
lost metal and may be in multiple
layers. Tightly adherent shiny gray
scale attached to the surface may be
mistaken for unaffected metal | | 53 | 5.1.1.6 | Hydrofluoric (HF)
Acid Corrosion | Corrosion by HF acid can resul
localized corrosion and i
by hydrogen cracking, blist | may be accompanied | Above 150 °F (66 °C) | Carbon steel, copper-nickel
alloys, Alloy 400 | Alloy C276 has been used
where there have been
cracking problems with
Alloy 400 | HF acid concentration (water
content), temperature, alloy
composition and the presence of
contaminants including oxygen
and sulfur compounds | HF alkylation unit, flare piping and
downstream units, Isostripper and
Depropanizer towers | Localized general or severe thinning of CS | Careful operation of the unit to
minimize water, oxygen, sulfur.
Alloy 400 (solid or clad) can be used
to eliminate the problems
associated with blistering and
HIC/SOHIC | UT and RT for thickness monitoring | Environmental cracking,
Hydrogen stress
cracking in HF | Low alloy steels, 300 Series SS and the
400 Series SS are susceptible to
corrosion and/or cracking
and are generally not suitable for HF
service | | 54 | 5.1.1.7 | Naphthenic Acid
Corrosion (NAC) | A form of high temperature corr
crude and vacuum units, and do
certain fractions or cuts that | ownstream units that process | N/A | Carbon steel, low alloy steels,
300 Series SS, 400 Series SS
and nickel base alloys | Alloys containing increasing amounts of molybdenum show improved resistance | naphthenic acid content
(neutralization number), TAN's as
low as 0.10, temperature, sulfur
content, velocity and alloy
composition | Crude and vacuum heater tubes, crude
and vacuum transfer lines; vacuum
bottoms piping, AGO circuits; HVGO | Localized corrosion, pitting
corrosion, or flow induced
grooving | Use alloys with higher molybdenum content for improved resistance. NAC can be reduced by blending crude to reduce the TAN and/or increase the sulfur content | UT and RT are used for thickness,
Monitor TAN and sulfur content,
Hydrogen probes, Electrical resistance
corrosion probes and corrosion
coupon racks | In cases where thinning is
occurring, it is difficult to
distinguish between NAC
and sulfidation. | It is most severe in two phase (liquid
and vapor) flow, in areas of high
velocity or turbulence, and in
distillation towers where hot vapors
condense to form liquid | | 55 | 5.1.1.8 | Phenol (Carbolic
Acid) Corrosion | Corrosion of carbon steel can or
a solvent to remove aromatic co
feedsto | ompounds from lubricating oil | Above 250°F (121 °C) | Increasing resistance: Carbon : C276 | | Temperature, water content, alloy chemistry and velocity | Phenol extraction facilities in lubes plant | General or localized corrosion of
carbon steel | Proper materials selection and
control of phenol solvent
chemistry. Type 316L SS to be used,
Alloy C276 has been used in areas of
high velocity | UT and RT to monitor for loss in
thickness.
ER corrosion probes and corrosion
coupons have been used for corrosion
monitoring | N/A | Maximum velocity of 30 fps in the recovery section. Temp. should be maintained to at least 30°F (17°C) above the dewpoint | | 56 | 5.1.1.9 | Phosphoric Acid
Corrosion | Phosphoric acid is most of
polymerization units. It can cau
localized corrosion of carbon
conte | se both pitting corrosion and
steels depending on water | Corrosion rates increase with increasing temp. | Increasing resistance: Carbon : 20 | steel < 304L < 316L < Alloy | Acid concentration, temperature and contaminants | Piping and equipment in the
polymerization unit where water mixes
with catalyst. Low velocity areas like
piping manifolds, the bottom of kettle-
type reboilers, partial penetration
welds, and exchangers | General or localized thinning of
carbon steel | 304L is satisfactory for up to about 120°F (49°C). Type 316L SS is required from 120°F to 225°F (49°C to 107°C). 316L SS and Alloy 20 are effective at concentrations up to 85% at boiling temp. | UT and RT for loss of thickness.
Sample iron in water from first column
overhead receiver.
ER probes and/or corrosion coupons. | N/A | Most corrosion probably occurs during
water washing operations at
shutdowns. Contaminants, such as
chlorides, can increase phosphoric acid
corrosion | | 57 | 5.1.1.10 | Sour Water
Corrosion (Acidic) | Corrosion of steel due to acidic s
pH between 4.5 and 7.0. Carbo
prese | on dioxide (CO ₂) may also be | N/A | Carbon Steel | Stainless steels, copper
alloys and nickel base
alloys | H ₂ S content, pH, temperature,
velocity and oxygen
concentration | Acid sour water corrosion is a concern
in overhead systems of FCC and coker
gas fractionation plants with high H ₂ S
levels and low NH ₃ levels. | General thinning. However,
localized corrosion or localized
underdeposit attack can occur,
especially if oxygen is present. | Copper alloys and nickel alloys are generally not susceptible to acid sour water corrosion. However, copper alloys are
vulnerable to corrosion in environments with ammonia. | Scanning ultrasonic thickness methods
or profile radiography.
Periodic measurement of pH.
Properly placed corrosion probes and
corrosion coupons | Wet H ₂ S damage,
Carbonate SCC | H ₂ S concentration in the sour water
decreases as temp. increases.
Above a pH of 4.5, a protective, thin
iron sulfide layer limits the corrosion
rate. | | 58 | 5.1.1.11 | Sulfuric Acid
Corrosion | Sulfuric acid promotes general and localized corrosion of
carbon steel and other alloys. Carbon steel heat
affected zones may experience severe corrosion | | N/A | Increasing resistance: Carbo
high silicon cast iron
iron < Alloy B-2 | < high nickel cast | Acid concentration, temperature,
alloy content, velocity,
contamination and presence of
oxidizers | Sulfuric acid alkylation units and waste water treatment plants | General in nature, but attacks
carbon steel weld heat affected
zones, Hydrogen grooving may
occur, Sulfuric acid attacks slag
left from welding | Materials selection and proper
operation within design velocities,
Caustic to neutralize the acid | UT or RT inspection of turbulent zones
and hottest areas. Corrosion
monitoring with coupons and ER
probes | N/A | Carbon steel corrosion rates increase significantly if the flow velocity exceeds about 2 to 3 fps (0.6 to 0.9 m/s) or at acid concentrations below 65%. | | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | |---------|----------|---|--|--|--------------------------------------|---|---|---|---|--|--|--|--|--| | 59 | 5.1.1.12 | Aqueous Organic
Acid Corrosion | Naturally occurring ac
significantly to a queous corrosio
quantity of acids, and the prese
These acids may also result fron
operations or | on depending on the type and
ence of other contaminants.
In additives used in upstream | N/A | All grades of Carbon steel | N/A | Type and quantity of organic
acids, metal temperature, fluid
velocity, system pH, and presence
of other acids | Carbon steel piping and process
equipment in crude tower, vacuum
tower and coker fractionator
overhead systems including heat
exchangers, towers and drums | Corroded surface smooth and damage may be difficult to distinguish. In pipe or other equipment where there is significant flow, the surfaces are sometimes smoothly grooved. | Minimized through
the injection of a chemical
neutralizing additive. Upgrading to
corrosion-resistant alloys | UT and RT for loss of thickness. Long range UT techniques for long run pipe. Automatic ultrasonic scanning methods or profile RT for locally thinned areas. Strategically placed corrosion probes and/or corrosion coupons | HCI corrosion,
Ammonium chloride
corrosion | Organic compounds in the crude furnace form low molecular weight organic acids which condense in distillation tower overhead systems. | | 20 | 5.1.2 | Environment-Ass | sted Cracking | | | | | | | | | | | | | 60 | 5.1.2.1 | Polythionic Acid
Stress Corrosion
Cracking (PASCC) | Normally occurring during shu
operation when air and moistur
to sulfur acids forming from su
acting on sensitized austenit
adjacent to welds or | e are present. Cracking is due
Ifide scale, air and moisture
ic stainless steels. Usually | 750°F to 1500°F
(400°C to 815°C) | 300 Series SS, Alloy 600/600H
and Alloy 800/800H | N/A | A combination of environment,
material, and stress | All units where sensitized alloys are
used in sulfur-containing environments,
commonly damaged heat exchanger
tubes, furnace tubes and piping | localized and may not be evident
until a leak appears during start-
up. Cracking propagates
intergranularly | Flushing the equipment with
alkaline or soda ash solution to
neutralize sulfur acids | Flapper disc sanding prior to PT, | dependent formation
boundaries of the metal | to the composition / time / temp. of chromium carbide in the grain . Sensitization occurs in the 750°F to C to 815°C) temp. range. | | 61 | 5.1.2.2 | Amine Stress
Corrosion Cracking | Combined action of tensile stre
alkanolamine systems used to
CO ₂ and their mixtures fro
hydrocarbon streams. Amin
associated with lear | remove/absorb H ₂ S and/or
m various gas and liquid
the cracking is most often | N/A | Carbon steel and low alloy
steels | Solid or clad stainless
steel, Alloy 400 | Level of tensile stress, amine concentration and temperature | All non-PWHT carbon steel piping and
equipment in lean amine service
including contactors, absorbers,
strippers, regenerators and heat
exchangers as well as any equipment
subject to amine carryover. | Surface breaking flaws that
initiate on the ID of piping and
equipment primarily in the weld
HAZ. Cracking typically develops
parallel to the weld | PWHT all carbon steel welds in piping and equipment. Water wash non-PWHT carbon steel piping and equipment prior to welding, heat treatment orsteamout. | WFMT or ACFM techniques,
PT is usually not effective.
Ut technique including external SWUT.
AET can also be used for monitoring
crack growth and locating growing
cracks | Amine cracking is more properly termed amine stress corrosion cracking | Amine cracking is a form of alkaline
stress corrosion cracking. It is most
often found at or adjacent to non-
PWHT'd carbon steel weldments or in
highly cold worked parts | | | | | Hydrogen Blistering: Surface I
within the wall thickness of a p
hydrogen atoms combine to for
are too large to diffuse out an
point where local deformation | oipe or pressure vessel. The
rm hydrogen molecules that
d the pressure builds to the | | | | | | Hydrogen blisters appear as bulges on the ID or OD surface | Effective barriers that protect the surface of the steel from the wet H ₂ S environment | | hydrogen gas from the p | ydrogen generated by corrosion, not rocess stream. PWHT will not prevent and HIC from occurring | | | | West II S Damage | Hydrogen Induced Cracking (HIC): Hydrogen blisters can form at many different depths from the surface of the steel, in the middle of the plate or near a weld. In some cases, neighboring or adjacent blisters that are at slightly different depths (planes) may develop cracks that link them together. Interconnecting cracks between the blisters often have a stair step appearance, and so IHC is sometimes referred to as "stepwise cracking" Stress Oriented Hydrogen Induced Cracking (SOHIC): SOHIC is similar to HIC but is a potentially more damaging form of cracking which appears as arrays of cracks stacked on top of each other. The result is a
throughthickness crack that is perpendicular to the surface and is driven by high levels of stress (residual or applied). They usually appear in the base metal adjacent to the well heat affected zones where they initiate from HIC damage or other cracks or deflects including sulfide stress cracks. | rom the surface of the steel,
sear a weld. In some cases,
s that are at slightly different
acks that link them together.
the blisters often have a stair
s sometimes referred to as | Blistering, HIC, and
SOHIC: | | | Environmental conditions (pH,
H ₂ S level, contaminants, temp.),
material properties (hardness,
microstructure, strength) and
tensile stress level.
Hydrogen permeation or | Blistering, HIC, SOHIC and SSC damage
can occur throughout the refinery
wherever there is a wet H ₃ S
environment present. In
hydroprocessing units, increasing
concentration of ammonium bisulfide
above 2% increases the | HIC damage can occur wherever
blistering or subsurface
laminations are present | HIC-resistant steels can be used | Process conditions should be evaluated. Inspection for wet H₂S | HIC is often found in so- | called "dirty" steels with high levels of inclusions | | 62 | 5.1.2.3 | Wet H ₂ S Damage
(Blistering/HIC/
SOHIC/SSC) | | Ambient and 300°F
(150°C) or higher
SSC: Below about
180°F (82°C) | Carbon steel and low alloy
steels | N/A | diffusion rates have been found
to be minimal at pH 7 and
increase at both higher and
lower pH.
Hydrogen permeation increases
with increasing H2S partial
pressure. | potential for blistering, HIC and SOHIC. Cyanides significantly increase the probability and severity of blistering, HIC and SOHIC damage. SSC is most likely found in hard weld and heat affected zones and in high strength components including bolts, relief valve springs, 400 Series SS valve trim, compressor shafts, sleeves and springs. | In pressure-containing
equipment, SOHIC and SSC
damage is most often associated
with the weldments | Wash water injection to dilute the
HCN concentration.
PWHT can also help to minimize
susceptibility to SOHIC. | damage generally focuses on weld
seams and nozies. WMHT, Ec, CRT or
ACFM techniques. UT techniques
including external SWUT. AET can be
used for monitoring crack growth. | Blistering, HIC and SOHIC damage are not related to steel hardn
SOHIC is driven by localized stresses so that PWHT is also somew
effective in reducing SOHIC damage. | | | | | | | Sulfide Stress Cracking (SSC):
combined action of tensile st
presence of water and H ₂ S. SSC
cracking resulting from absorption
produced by the sulfide corrossurface | tress and corrosion in the
is a form of hydrogen stress
on of atomic hydrogen that is
ssion process on the metal | | | | | | SSC can also be found at any
location where zones of high
hardness are found in
vessels or in high strength steel
components | Specialized corrosion inhibitors | | SSC can initiate on the surface of steels in highly localized zones of
high hardness in the weld metal and heat affected zones. Hardness
is primarily an issue with SSC. PWHT is highly effective in
preventing or eliminating SSC by reduction of both hardness and
residual stress | | | 63 | 5.1.2.4 | Hydrogen Stress
Cracking - HF | Hydrogen Stress Cracking is a for
that can initiate on the surface
steels and carbon steels with hi
hardness in the
and HAZ as a result of expo
environn | e of high strength low alloy
ighly localized zones of high
weld metal
sure to aqueous HF acid | N/A | Carbon steel and low alloy steels. | N/A | Steel hardness, strength and stress | All piping and equipment exposed to HF
acid at any concentration with hardness
levels above the recommended limit.
ASTM A19387M bolts are also
susceptible if overtorqued | Surface breaking cracks, usually
associated with weldments.
Cracking will be intergranular. | PWHT is beneficial in reducing the
hardness and residual stresses. Use
carbon steels with Carbon
Equivalents (CE) less than 0.43. | Metallography, WFMT, Hardness
testing | Same mechanism that is
responsible for SCC in wet
H ₂ S environments except
that HF acid is generating
the hydrogen | Susceptibility increases with increasing hardness. Hardness levels above Rockwell C 22 (237 BHN) are highly susceptible. | | 64 | 5.1.2.5 | Carbonate Stress
Corrosion Cracking
(ACSCC) | Surface breaking cracks that oc
welds under the combin
stress in systems containing
carbonate, where some
prese | ned action of tensile
a free water phase with
amount of H ₂ S is also | N/A | Carbon steel and low alloy
steels | N/A | Residual stress level of carbon
steel and the water chemistry.
Most failures have occurred in
the range of pH 8 to 10 | Fluid catalytic cracking unit main
fractionator overhead condensing and
reflux system, the downstream wet gas
compression system, and the sour
water systems | Propagates parallel to the weld in
the heat-affected zone, or
adjacent base metal within 2
inches (50 mm) of the weld | Post-fabrication stress-relieving
heat treatment of 1200°F to 1225°F
(645°C to 663°C).
A metavanadate inhibitor can be
used in hot carbonate systems in
CO ₂ removal units | Monitoring the pH, CO ₃ ⁻² concentration of FCC sour waters. WFMT or ACFM, UT including external SWUT techniques. AET for crack growth and locating growing cracks. | Carbonate cracking | Water wash non-PWHT piping and equipment prior to steamout or heat treatment in hot carbonate systems. Grinding out the cracks is a viable method of crack depth determination | | | 5.1.3 | Other Mechanism | ns | | | | | | | | | | | | | Sr
| Sec. | Damage
Mechanism | Definition | Defect | Temperature
°F (°C) | Affected
Materials | Resistant
Materials | Critical Factors | Affected Units
/Equipment | Morphology | Mitigation | Inspection | Related
Mechanism | Comments | |---------|---------|---|---|--|------------------------|---|------------------------|---|---|---|---|---|----------------------|--| | 65 | 5.1.3.1 | High Temperature
Hydrogen Attack
(HTHA) | Results from exposure to hydrog and pressures. The hydrogen re form methane (CH ₄) which can The loss of carbide causes as Methane pressure builds up, f microfissures and fissures that reallure can occur when the craability of the pressure | acts with carbides in steel to
not diffuse through the steel.
n overall loss in strength.
forming bubbles or cavities,
may combine to form cracks.
cks reduce the load carrying | N/A | Increasing resistance: Carbo
0.5Mo < 1Cr-0.5Mo < 1.7
1Mo < 2.25Cr-1Mo-V < 3 | 5Cr-0.5Mo < 2.25Cr- | Temperature, hydrogen partial pressure, time and stress. | Hydroprocessing units, such as
hydrotreaters (desufurizers) and
hydrocrackers, catalytic reformers,
hydrogen producing units and hydrogen
cleanup units, such as pressure swing
absorption units.
Boiler tubes in very high pressure steam
service | The hydrogen/carbon reaction
can cause surface
decarburization of steel.
The hydrogen/carbon reaction
can cause surface
decarburization of steel | Use alloy steels with chromium and molybdenum to increase carbide stability | Metallographic analysis. Ultrasonic techniques using a combination of velocity ratio and AUBT for finding fissuring and/or serious cracking | N/A | The incubation period is the time period during which enough damage has occurred to be measured with available inspection techniques and may vary from hours at very severe conditions to many years | | 66 | 5.1.3.2 | Titanium Hydriding | metallurgical phenomenon in
which hydrogen diffuses into
the titanium and reacts to form
an embrittling hydride phase. | complete loss of ductility
with no noticeable sign of
corrosion or loss in
thickness. | Above 165°F (74°C) | Titanium alloys,
Zirconium alloys | N/A | Metal temperature, solution chemistry and alloy composition | water strippers and amine units in the
overhead condensers, heat exchanger
tubes, piping and other titanium
equipment. Cathodically protected
equipment with protection potentials <-
0.9 v SCE. | Cracking, | Titanium should not be used in known hydriding services such as amine or sour water, where the possibility of a leak is not
acceptable. | Metallography,
Bend test or a crush test,
Specialized eddy current techniques | N/A | Above 165°F (74°C) and
at a pH below 3, pH above 8 or
neutral pH with high H ₂ S content |