

Sour components in Natural Gas

Natural gas Sweetening

Purification processes which is employed to remove acidic contaminants from natural gases

the gas is usually considered sour if the hydrogen sulfide content exceeds 5.7 mg of H2S per cubic meter of natural gas.

TYPES OF CONTAMINANTS

Ammonia (NH3)

Hydrogen sulfide (H2S)

Hydrogen cyanide (HCN)

Carbon dioxide (CO2)

Carbonyl sulfide (COS)

Carbon disulfide (CS2)

Mercaptan (RSH)

Nitrogen (N2)

Water (H2O)

Sulfur dioxide (SO2)

Elemental sulfur

Mercury and arsenic

Oxygen

Natural gas Sweetening

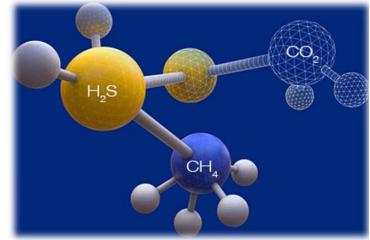
Acid Gases

H2S + water

sulfuric acid weak, corrosive acid

CO2 + water

carbonic acid.


Both are undesirable because they cause corrosion and reduce heating value and sales value.

Sour Gas

Sour gas is defined as natural gas with H2S and other sulfur compounds.

Sweet Gas

Sweet gas is defined as natural gas without any acidic impurities.

Characteristic	Specification			
Water content	4–71b/MMSCF maximum			
Hydrogen sulfide content	0.25 grain/100 SCF maximum			
Gross heating value	950 Btu/SCF minimum			
Hydrocarbon dew point	15°F at 800 psig maximum			
Mercaptan content	0.2 grain/100 SCF maximum			
Total sulfur content	1-5 grain/100 SCF maximum			
Carbon dioxide content	1–3 mol% maximum			
Oxygen content	0–0.4 mol% maximum			
Sand, dust, gums, and				
free liquid	Commercially free			
Delivery temperature (°F)	120°F maximum			
Delivery pressure (psia)	700 psig minimum			

Typical Product Specifications

WNTS SALES

GAS SPECIFICATIONS

Specifications	
Heating Value, GHV (BTU/SCF)	950-1350
Wobbe Index (BTU/SCF)	1325 +/- 8%
Hydrocarbon Dew point (oF at 725 psia)	55
Water Dew point (oF at 725 psia)	55
Particulate Size (microns, max)	400
Carbon Dioxide (mole%, max)	10
Total Inerts (mole%, max)	12
Hydrogen Sulfide, H ₂ S (ppmv, max)	10
Total Sulfur (ppmv, max)	30
Oxygen (mole%, max)	0.1
Methane as reactant species (mole%, min)	80
WNTS Pipeline Entry Pressure (psig at SSTI-S)	1800
WNTS Delivery Pressure (psig at Singapore)	550
Free Liquids	0
Delivery Temperature (oF, min above dew pt)	5
Delivery Temperature (oF, min absolute)	32

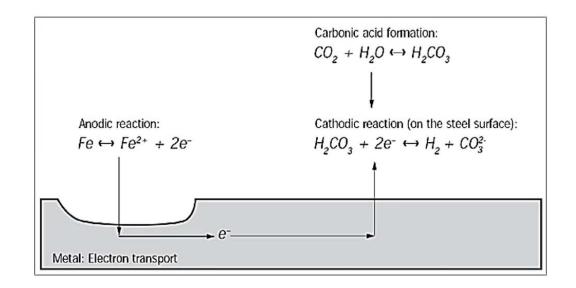
PROPANE PRODUCT

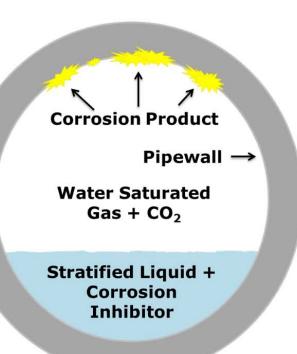
Specifications	
Vapor Pressure (psig at 100 F, max)	200
Ethane (volume%, max)	2.0
Propane (volume%, min)	95
Butane (volume%, max)	4.0
Copper Strip	1b
Hydrogen Sulfide (ppmw, max)	5.0
Total Sulfur (ppmw , max)	30
Water Content (ppmw , max)	10

BUTANE PRODUCT

Specifications	
Vapor Pressure (psig at 100 F, max)	70
Propane (volume%, max)	2.0
Butane (volume%, min)	97
Pentane (volume%, max)	1.0
Copper Strip	1b
Hydrogen Sulfide (ppmw , max)	5.0
Total Sulfur (ppmw , max)	30
Water Content (ppmw , max)	10

Typical Product Specifications


	Treated Gas Specs For:			Liquid Specs
	Pipeline	LNG	GTL	LPG
H ₂ S, ppmv	<4	< 2 -4	< 2 -4	<1 - 10
Total Sulfur, ppmv	< 20 - 50	< 10 -50	< 10 - 50	< 50
CO ₂	<2% - 8%	< 50 ppmv	< 50 -1000 ppmv	< 500
Hg, pg/Nm³	< 0.01	< 0.01	< 0.01	NA
H ₂ O, ppmv	<7 lb/ MMSCFD	< 0.1 ppm	< 1 ppm	< 5


Gas Sales Contracts Limit Concentration of Acid Compounds

1.	CO2
	☐ 2-4% for pipelines.
	☐ Lowers Btu content.
	☐ CO2is corrosive.
	20 ppm for LNG plants.
2.	H2S
	\square ¼ grain sulfur per 100 scf (approximately 4 ppm).
	□ 0.0004% H2S.
	2 ppm for LNG plants.
	☐ H2S is toxic.
	☐ H2S is corrosive (refer to NACE MR-01-75).

Hazards of CO2

Properties of H2S

Soluble in water and dissolves in drilling fluids

Colorless or transparent

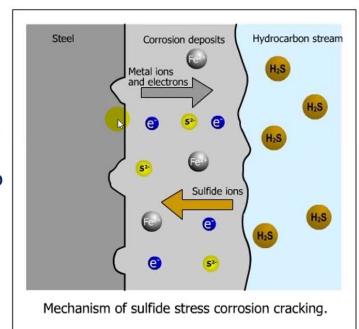
Generates 680 BTU/HR during

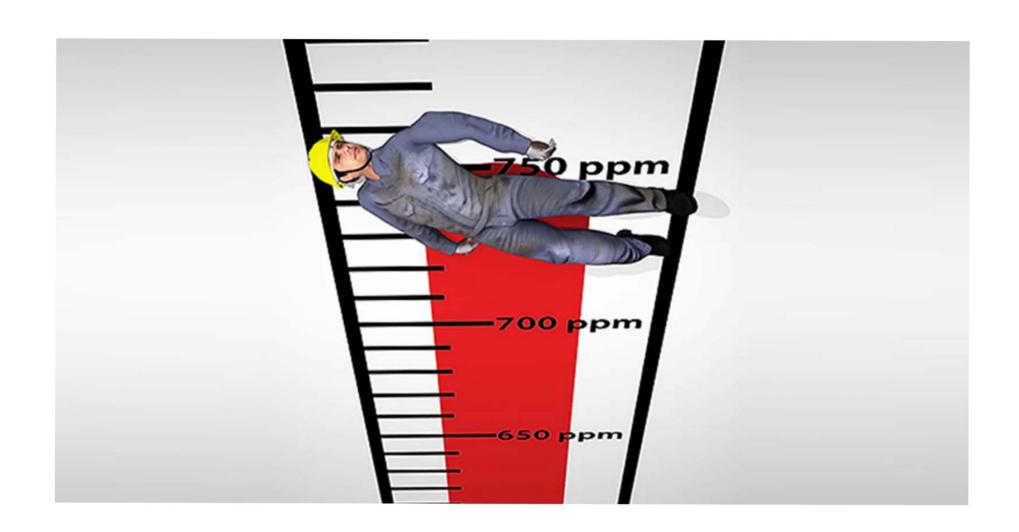
burning
LLCCLYLCL than air
(Vapor Density = 1.1895)
and accumulates in lowlying areas

flighty Toxic and hazardous to health

Corrosive to certain metals and elastomers

Readily dispersed by wind movement or air currents


Flammable


in concentrations between 4.3% and 46.0% and auto ignites at 500°F (260°C)

Hazards of H2S

- ☐ Highly toxic colorless and flammable gas.
- ☐ Heavier than air.
- ☐ At low concentration, it smells like "rotten eggs".
- ☐ Human sense of smell cannot be relied on to detect hazardous concentration of it.

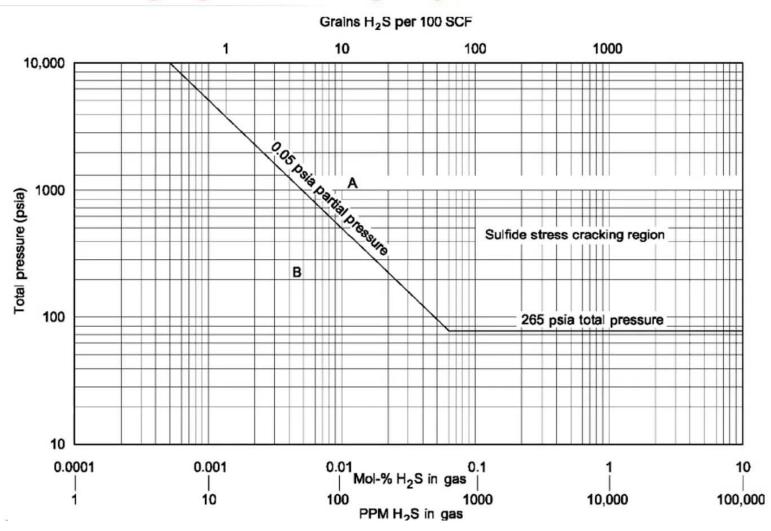
Concentration & Reaction by Human body

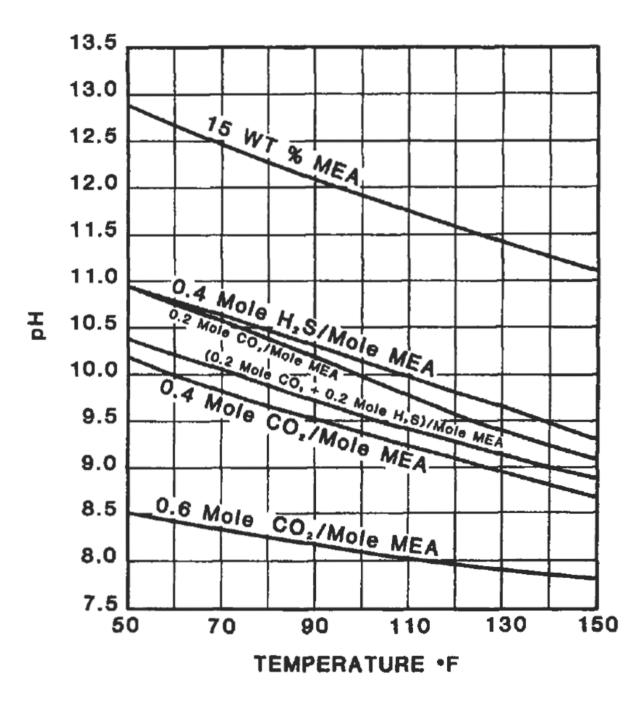
Slight			
Slight symptoms after several hours exposure	ppm	%	Symptoms
ns afte	1	0.0001	Detected by odor
	10	0.001	Occupational Exposure Level, Threshold Limit Value (TLV)
1 hour without serious effects	100	0.01	Kills sense of smell in 3 to 5 minutes. May burn eyes and throat.
7	200	0.02	Kills sense of smell rapidly. Burns eyes and throat after one hour.
Dangerous after 30 min to I hr	500	0.05	Dizziness, loses sense of reasoning, breathing ceases in few minutes. Needs prompt artificial resuscitation
	700	0.07	Will become unconscious quickly. Breathing will stop, death will result if not rescued promptly. Immediate artificial resuscitation
Fatal in less	1000	0.1	Unconscious at once; followed by death

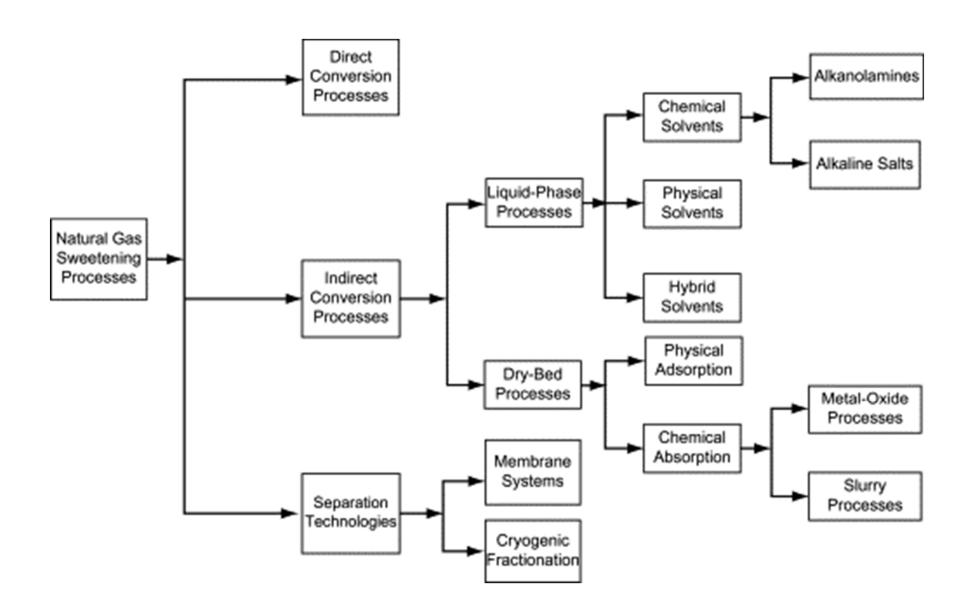
Concentration & Reaction by Human body

T	OXICITY OF HYDROGEN SULPHIDE GAS		
10 ppm (1/1000 of 1%)	Can smell. Safe for 8 hours exposure		
100 ppm (1/100 of 1%)	Kills smell in 3 to 15 minutes. May sting eyes and throat.		
200 ppm (2/100 of 1%)	Kills smell rapidly. Stings eyes and throat		
500 ppm (5/100 of 1%)	Loses sense of reasoning and balance. Respiratory paralysis in 2 to 15 minutes. Needs prompt artificial resuscitation.		
700 ppm (7/100 of 1%)	Breathing will stop and death result if not rescued promptly. Requires immediate artificial resuscitation.		
1,000 ppm (1/10 of 1%)	Unconscious at once. PERMANENT BRAIN DAMAGE MAY RESULT UNLESS RESCUED PROMPTLY.		

GAS RESERVOIR CLASSIFICATION

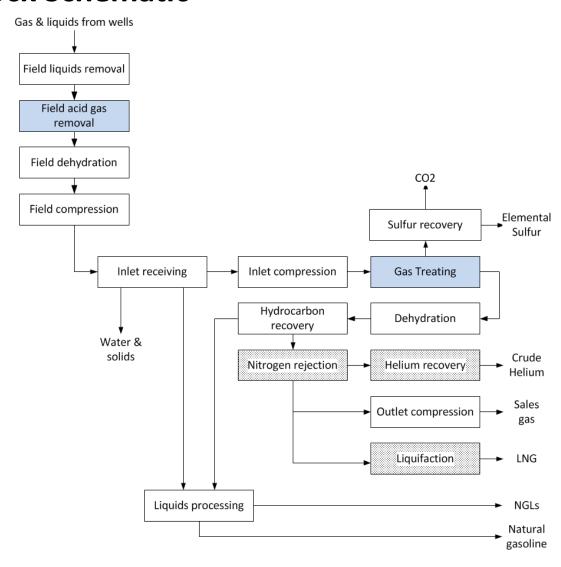

Number	Type	Content of H ₂ S
1	Non-sour gas reservoir	<0.0014%
2	Low sour gas reservoir	0.0014- 0.3%
3	sour gas reservoir	0.3—1.0%
4	Medium gas reservoir	1.0—5.0%
5	high sour gas reservoir	>5.0%


Partial Pressure


Partial pressure is used as an indicator if treatment is required.

- where CO2 is present with water, a partial pressure >30 psia would indicate CO2 corrosion might be expected.
- Below 15 psia would indicate CO2corrosion would not normally be a problem although inhibition may be required
- Factors that influence CO2 corrosion are those directly related to solubility, that is, temperature, pressure, and composition of the water.
- Increased pressure increases solubility and increased temperature decreases solubility.

Sulfide stress cracking regions in sour gas systems.



PURIFICATION PROCESSES

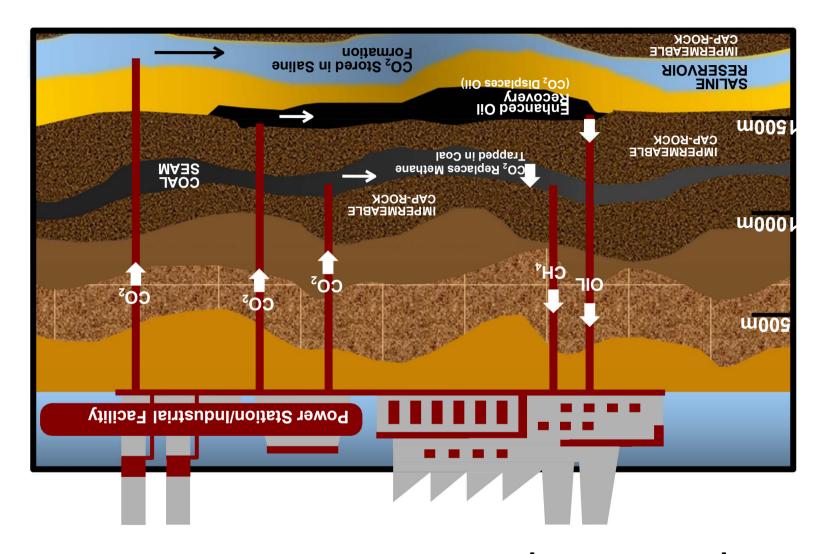
More than 30 purification process are available

- 1. Batch process
- 2. Aqueous Amine
- 3. Mixed Solution
- 4. Physical Solvents
- 5. Hot Potassium
- 6. Direct Oxidation
- 7. Adsorption
- 8. Membrane

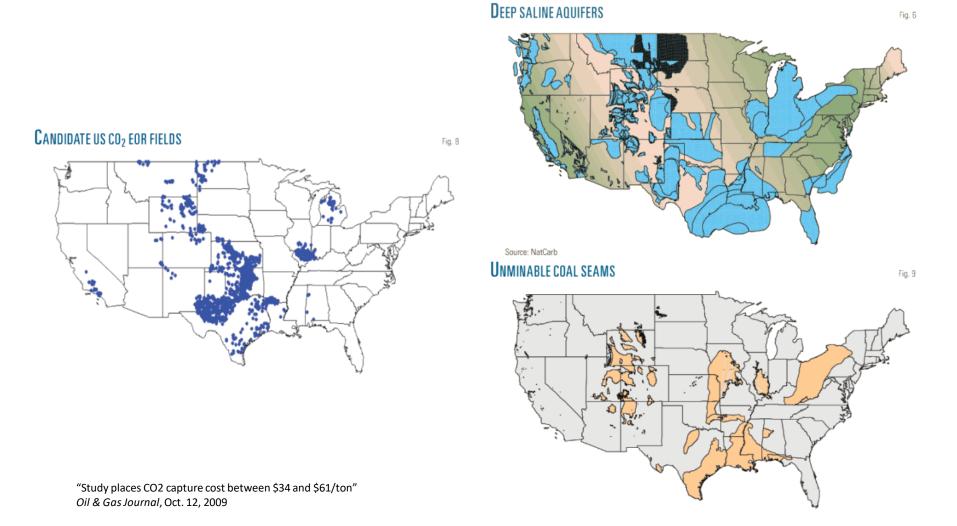
Plant Block Schematic

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations


Gas treating

- Gas treating involves removing the "acid gases" to sufficiently low levels to meet contractual specifications
 - Carbon dioxide (CO₂)
 - Hydrogen sulfide (H₂S)
 - Plus other sulfur species
- The problems
 - H₂S is highly toxic
 - H₂S combustion gives SO₂ toxic & leads to acid rain
 - CO₂ is a diluent in natural gas corrosive in presence of H₂O
- Purification levels
 - H2S: Pipeline quality gas requires 0.25 grains/100 scf (4 ppmv)
 - CO2: pipeline quality gas may allow up to 4 mole%
 - Cryogenic applications need less than 50 ppmv


Two step process

- Two steps
 - Remove the acid gases from natural gas
 - Dispose of the acid gases
- Disposition
 - CO₂
 - Vent to atmosphere
 - EOR Enhanced Oil Recovery
 - Sequestration
 - H₂S
 - Incineration or venting (<u>trace amounts</u>)
 - React with scavengers (e.g. iron sponge)
 - Convert to elemental sulfur
 - Injection into suitable underground formation

CO2 Capture and Sequestration

CO2 Sources & Disposition Options

Processes for acid gas removal

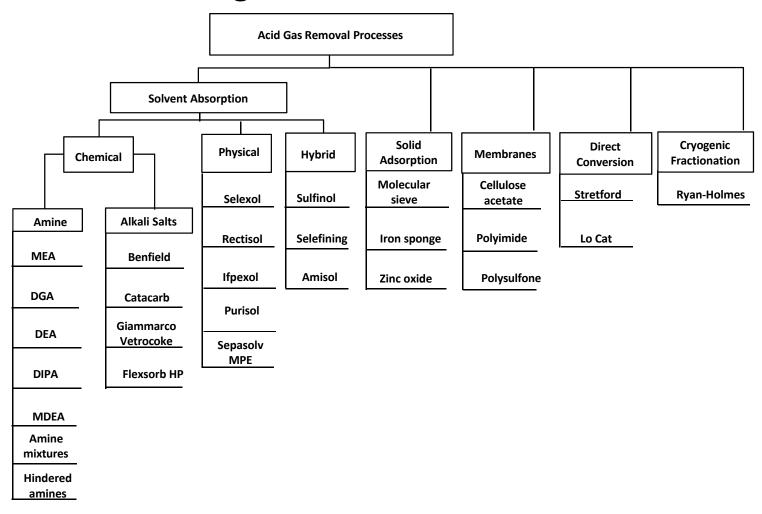


Figure 10.1, Fundamentals of Natural Gas Processing, 2nd ed., Kidnay, Parrish, & McCartney, 2011

Selecting a process

- Factors for selecting process
 - Type & concentration of impurities
 - Hydrocarbon composition of the gas
 - Pressure & temperature of the gas
 - Specifications for outlet gas
 - Volume of gas to be processed
- Four possible scenarios
 - Only CO₂
 - Only H₂S
 - Both CO₂ and H₂S
 - Both CO₂ and H₂S present <u>but</u> selectively remove H₂S
 - Allow CO₂ slip

Selecting a process

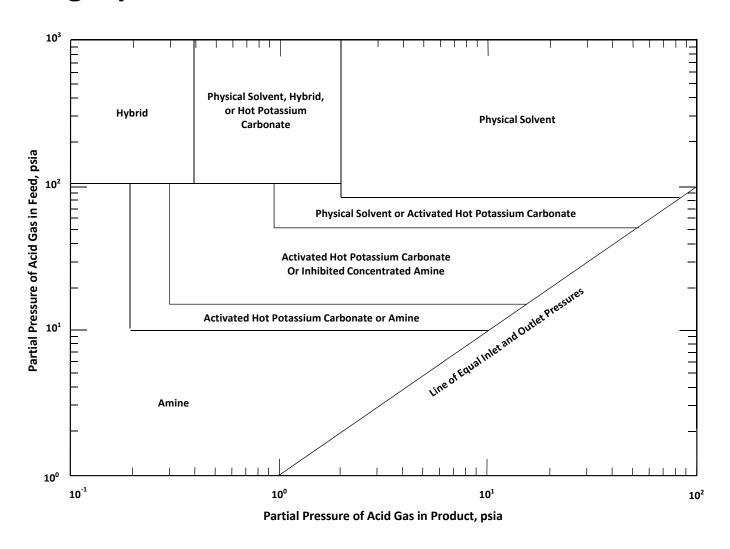
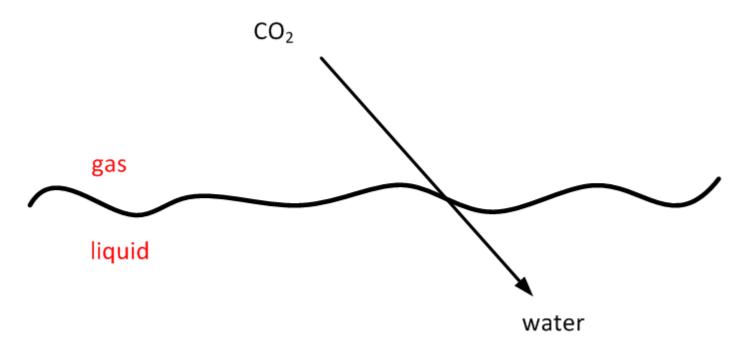


Table 1-3 Gases removed by various processes

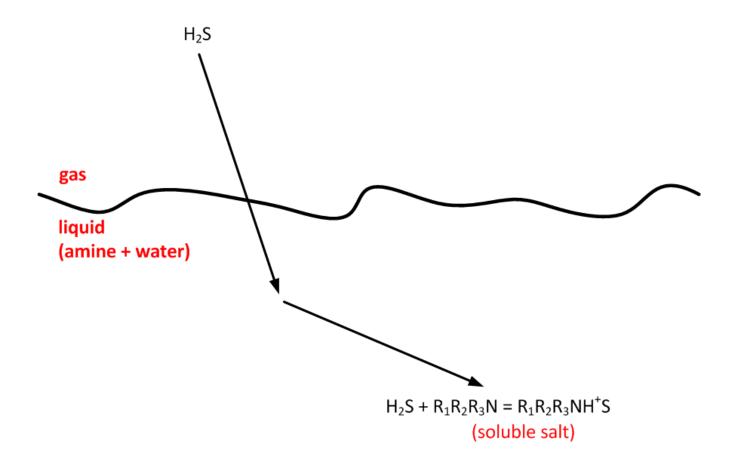
Process	GASES REMOVED				
₩.	CO2	H ₂ S	RHS	cos	CS ₂
Solid Bed					
Iron sponge		X			
Sulfa-Treat		X			
Zinc Oxide		X X X			
Molecular Sieves	X	X	X	X	X
Chemical Solvents					
MEA—MonoEthanolAmine	X	X		Xa	X
DEA—DiEthanolAmine	X	X		X	X
MDEA—MethylDiEthanolAmine		X			
DGA—DiGlycolAmine	X	X X X		X	X
DIPA—DilsoPropanolAmine	X	X		X	
Hot potassium carbonate	X	X		X	X
Physical Solvents					
Fluor Solvent	X	X	X	X	X
Shell Sulfinol®	X		X	X	X
Selexol®	×	X X	X	X	X
Rectisol		X			
Direct Conversion of H ₂ S to Sulful	r				
Claus		X			
LO-CAT®					
SulFerox®		X X X X			
Stretford		X			
Sulfa-Check		X			
Nash		X			
Gas Permeation	X	X			


^aMEA reacts nonreversibly with COS (carbonyl sulfide), and, therefore, should not be used to treat gases with a large concentration of COS.

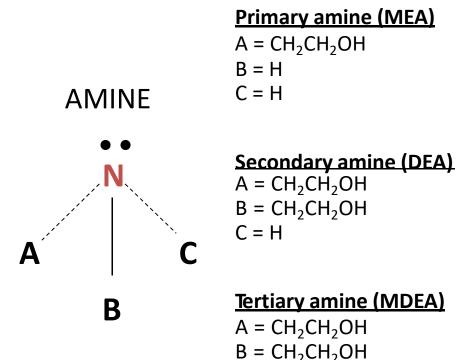
Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations

Physical absorption


(Examples: carbonated water, soft drinks, champagne)

high P, low T = absorption


low P, high T = desorption

Chemical absorption

reversible exothermic reaction

Amine Chemistry

 $C = CH_3$

- Gas treating amines are:
 - Weak Lewis Bases
 - H+ from weak acids react with the electrons on N:
- ABC substituents influence:
 - How fast acids react with N:
 - Temperature bulge in absorber
 - Energy required in regenerator
 - Chemical Stability
 - Unwanted reactions

Dow Oil & Gas – Gas Treating Technology Presentation to URS Washington Division, August 2009 Rich Ackman – ackmanrb@dow.com

Sterically hindered amines – selective H₂S absorbers

Diisopropanolamine (DIPA)

$$CH_3 - CH - CH_2$$

$$CH_3 - CH - CH_2$$

$$OH$$

$$OH$$

$$OH$$

2-amino,2-methyl,1-propanol (AMP)

$$CH_3$$
 I
 $HOCH_2$ - C - NH_2
 I
 CH_3

Amines

- Amines remove H₂S and CO₂ in two step process:
 - Gas dissolves in solvent (physical absorption)
 - Dissolved gas (a weak acid) reacts with weakly basic amines
- H₂S reaction

$$R_1R_2R_3N + H_2S \longleftrightarrow R_1R_2R_3NH+HS^-$$

- CO₂ reacts two ways with amine:
 - With water

$$CO_2 + H_2O + R_1R_2R_3N \leftrightarrow R_1R_2R_3NH^+ HCO_3^-$$

- Much slower than H₂S reaction
- Without water

$$CO_2 + 2 R_1 R_2 NH \leftrightarrow R_1 R_2 NH_2 + R_1 R_2 NCOO^{-1}$$

- Faster but requires one H attached to the N
- Use tertiary amines to "slip" CO₂

Comparison of acid gas removal solvents

Process	Capable of meeting H2S spec?	Removes COS, CS2, & mercaptans	Selective H2S removal	Minimum CO2 level obtainable	Solution subject to degradation? (degrading species)
Monoethanolamine (MEA)	Yes	Partial	No	100 ppmv at low to moderate pressures	Yes (COS, CO2, CS2, SO2, SO3 and mercaptans)
Diethanolamine (DEA)	Yes	Partial	No	50 ppmv in SNEA-DEA process	Some (COS, CO2 CS2, HCN and mercaptans)
Triethanolamine (TEA)	No	Slight	No	Minimum partial pressure of 0.5 psia (3 kPa)	Slight (COS, CS2 and mercaptans)
Methyldiethanolamine (MDEA)	Yes	Slight	Some	Bulk removal only	No

Representative operating parameters

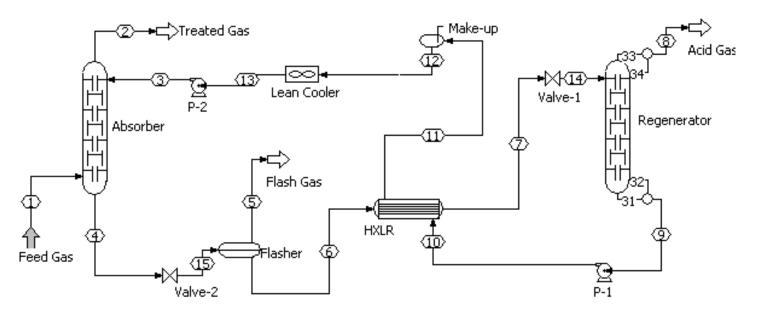
	MEA	DEA	DGA	MDEA
Weight % amine	15 to 25	25 to 35	50 to 70	40 to 50
Rich amine acid gas loading mole acid gas / mole amine	0.45 to 0.52	0.43 to 0.73	0.35 to 0.40	0.4 to 0.55
Acid gas pickup mole acid gas / mole amine	0.33 to 0.40	0.35 to 0.65	0.25 to 0.3	0.2 to 0.55
Lean solution residual acid gas mole acid gas / mole amine	~0.12	~0.08	~0.10	0.005 to 0.01

Gas Treating Amines

- Generic Amines
 - MEA (monoethanolamine)
 - 15 18% wt. (5 6.1% mol)
 - DEA (diethanolamine)
 - 25 30% wt. (5.4 6.8% mol)
 - DIPA (diisopropanolamine)
 - 30% 50% wt. (5.5 11.9% mol)
 - MDEA (methyldiethanolamine)
 - 35% 50% wt. (7.5 13.1% mol)

	Wt%	Mol%	Load	Relative
			Range	Capacity
MEA	18%	6.1%	0.35	1
DGA	50%	14.6%	0.45	3.09
DEA	28%	6.3%	0.48	1.41
MDEA	50%	13.1%	0.49	3.02
CompSol 20	50%	10.4%	0.485	2.37
CR 402	50%	14.7%	0.49	3.38
AP 814	50%	13.9%	0.485	3.16

Dow Oil & Gas – Gas Treating Technology Presentation to URS Washington Division, August 2009 Rich Ackman – ackmanrb@dow.com


Heats of reaction in amine solutions

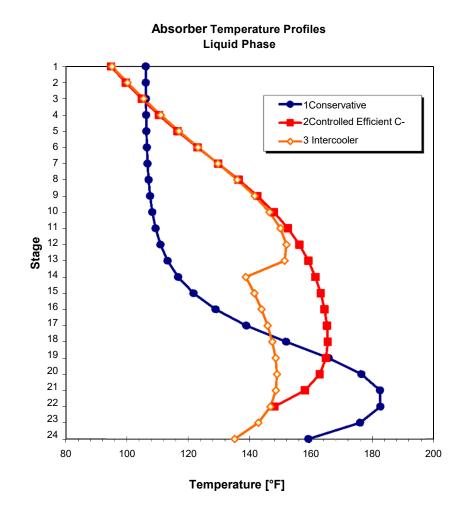
Amine	H ₂ S, Btu/lb (kJ/kg)	CO ₂ , Btu/lb (kJ/kg)
DGA®	674 (1570)	850 (1980)
MEA	610 (1420)	825 (1920)
DEA	555 (1290)	730 (1700)
MDEA	530 (1230)	610 (1420)

Includes heat of solution & heat of reaction

Can give rise to temperature "bulges" in the absorbing column

Typical Amine Treating Plant

- Typical plant configuration
 - Broad range of treating applications
 - Low to intermediate specifications
 - Selective treating, low H₂S
 - Low installed cost


Amine Tower Parameters

- Tower Design Considerations
 - Gas Composition
 - Trays
 - System Factor Bubble Area
 - MEA/DEA 0.75 abs (0.85 reg)
 - MDEA & Formulated Solvents 0.70 abs (0.85 reg)
 - System Factor Downcomer
 - MEA/DEA 0.73 abs (0.85 reg)
 - MDEA & Formulated Solvents 0.70 abs (0.85 reg)
 - Standard Cross Flow vs. High Capacity
 - Calming Section, MD Trays
 - Packings
 - Random Packing
 - o Capacity vs. efficiency, GPDC overlay
 - Structured Packing

Dow Oil & Gas – Gas Treating Technology Presentation to URS Washington Division, August 2009 Rich Ackman – ackmanrb@dow.com

Amine Tower Parameters

- Absorber design considerations
 - Pinch points limit
 - Top of tower lean pinch
 - Temperature bulge maximum
 - Bottom of tower rich pinch
 - Confidence level in VLE
 - Temperature profile indicator

Simplified Design Calculations

• Estimate amine circulation rate

$$\mathsf{GPM} = C \cdot \left(\frac{Qy}{x}\right)$$

C = 41 if MEA

45 if DEA

32 if DEA (high loading)

55.8 if DGA

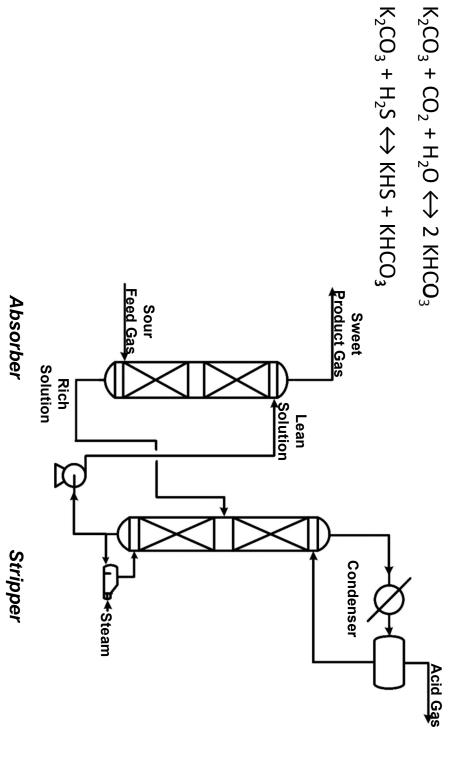
Q = Sour gas to be processed [MMscfd]

y = Acid gas concentration in inlet gas [mol%]

x = Amine concentration in liquid solution [wt%]

- Use only if combined H₂S + CO₂ in gas below 5 mol%
- Amine concentration limited to 30 wt%

Amine Approximate Guidelines


		MEA	DEA	DGA
Acid gas pickup	scf/gal @ 100°F	3.1 - 4.3	6.7 - 7.5	4.7 - 7.3
Acid gas pickup	mol/mol amine	0.33 - 0.40	0.20 - 0.80	0.25 - 0.38
Lean solution residual acid gas	mol/mol amine	0.12	0.01	0.06
Solution concentration	wt%	15 - 25	30 - 40	50 - 60
Reboiler duty	BTU/gal lean solution	1,000 - 2,000	840 - 1,000	1,100 - 1,300
Steam heated reboiler tube bundle flux	Btu/hr-ft²	9,000 - 10,000	6,300 - 7,400	9,000 - 10,000
Direct fired reboiler tube bundle flux	Btu/hr-ft²	8,000 - 10,000	6,300 - 7,400	8,000 - 10,000
Reclaimer steam bundle or fire tube flux	Btu/hr-ft²	6 - 9	N/A	6 - 8
Reboiler temperature	°F	225 - 260	230 - 260	250 - 270
Heat of reaction	Btu/lb H ₂ S	610	720	674
	Btu/lb CO ₂	660	945	850

Operating issues with amine units

- Corrosion caused by:
 - High amine concentrations
 - Rich amine loadings
 - Oxygen
 - Heat stable salts (HSS)
- Foaming caused by
 - Suspended solids
 - Surface active agents
 - Liquid hydrocarbons
 - Amine degradation products (heat stable salts)

Hot potassium carbonate process (Hot Pot)

Major reactions

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations

Characteristics of physical absorption processes

- Most efficient at high partial pressures
- Heavy hydrocarbons strongly absorbed by solvents used
- Solvents can be chosen for selective removal of sulfur compounds
- Regeneration requirements low compared to amines & Hot Pot
- Can be carried out at nearambient temperatures
- Partial dehydration occurs along with acid gas removal

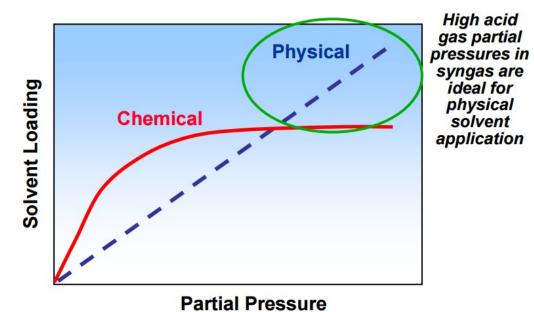


Figure from *UOP Selexol*TM *Technology for Acid Gas Removal*, UOP, 2009
Retrieved March 2016 from
http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1

Comparison of chemical and physical solvents

	Advantages	Disadvantages
Chemical Solvent (e.g., amines, hot potassium carbonate)	Relatively insensitive to H ₂ S and CO ₂ partial pressure	High energy requirements for regeneration of solvent
	Can reduce H ₂ S and CO ₂ to ppm levels	Generally not selective between CO ₂ and H ₂ S
		Amines are in a water solution and thus the treated gas leaves saturated with water
Physical solvents (e.g., Selexol, Rectisol)	Low energy requirements for regeneration	May be difficult to meet H ₂ S specifications
	Can be selective between H ₂ S and CO ₂	Very sensitive to acid gas partial pressure

Physical Solvents – Selexol

- Characteristics
 - Poly (Ethylene Glycol) Dimethyl Ether

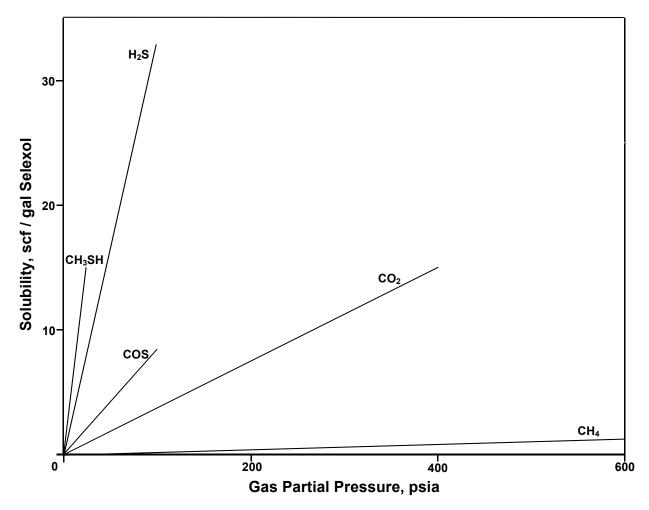
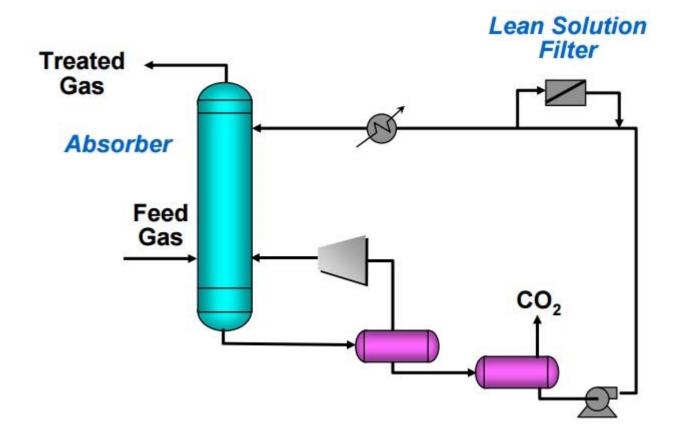
$$CH_3 - O - (CH_2 - CH_2 - O)_n - CH_3$$
 where n is from 3 to 10

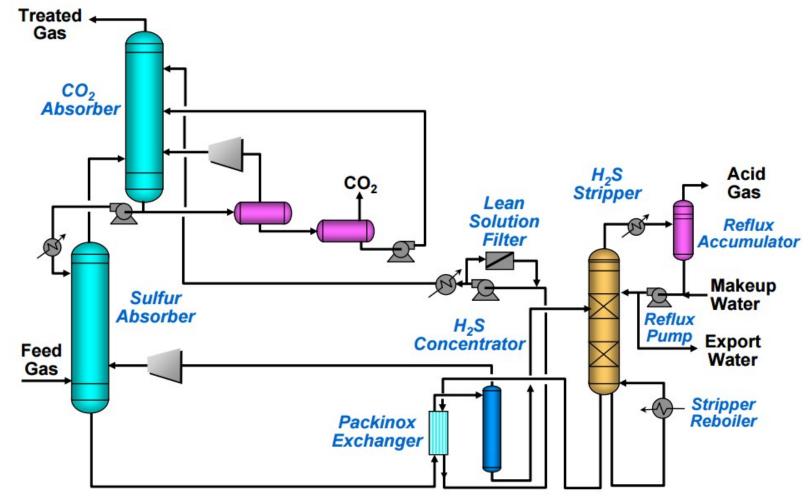
- Selexol is a mixture of homologues so the physical properties are approximate
- Clear fluid that looks like tinted water
- Capabilities
 - H₂S selective or non selective removal very low spec. 4 ppm
 - CO₂ selective or non selective removal 2% to 0.1%
 - Water dew point control
 - Hydrocarbon dew point control
 - See relative solubilities; more efficient to remove hydrocarbon vs. refrigeration
 - Organic sulfur removal mercaptans, disulfides, COS

Selexol Processes

- Physical solvent which favors high pressure & high partial pressure
- Configurations
 - H₂S & organic sulfur removal
 - Steam stripping for regeneration
 - CO₂ removal
 - Flash regeneration
 - Chiller for low CO₂
- Special applications
 - Siloxanes are removed from landfill gas
 - Metal carbonyl are removed from gasifier gas

Solubility in Selexol at 70°F (21°C)


Figure 10.6, Fundamentals of Natural Gas Processing, 2nd ed., Kidnay, Parrish, & McCartney, 2011

Selexol process – CO₂ separation

UOP Selexol[™] Technology for Acid Gas Removal, UOP, 2009
Retrieved March 2016 from http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1

Selexol process – sulfur removal & CO₂ capture

UOP Selexol™ Technology for Acid Gas Removal, UOP, 2009

Retrieved March 2016 from http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations

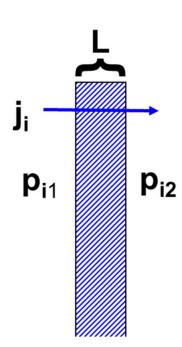
Membrane systems

• Based on Fick's law of diffusion through the membrane

$$J_{i} = \frac{S_{i}D_{i}\left(\Delta p_{i}\right)}{L}$$

where:

 J_i is the molar flux of component i through the membrane

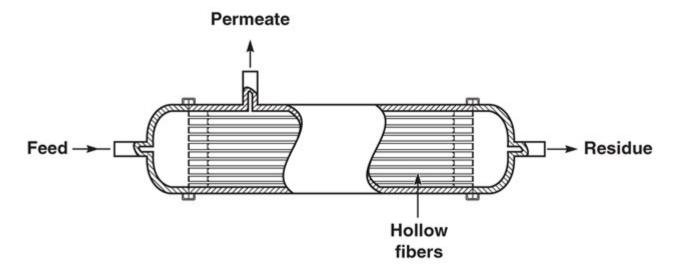

 S_i is the solubility term

 D_i is the diffusion coefficient

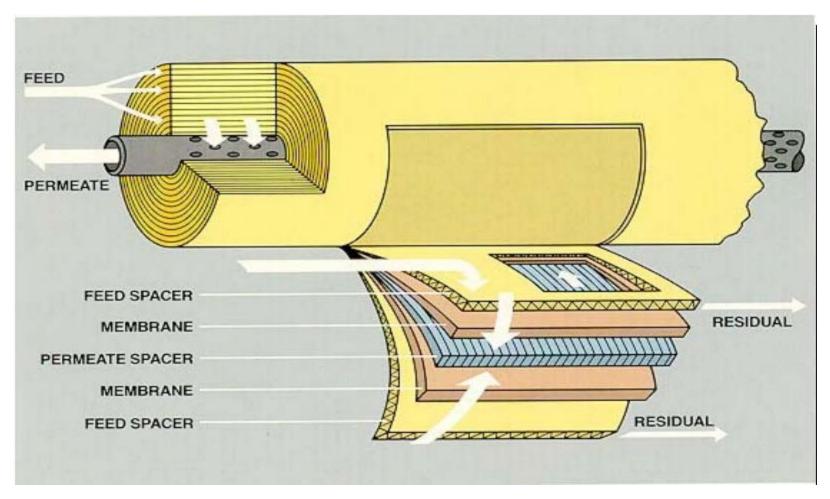
 Δp_i is the partial pressure difference across the membrane

L is the thickness of the membrane

- The permeability combines the properties of solubility & diffusion
 - Differs for each compound
 - Provides selectivity

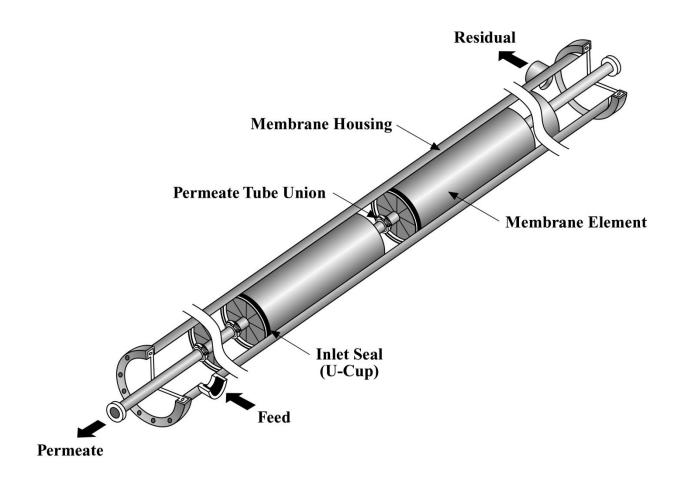


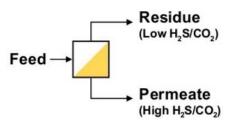
$$y_{i,\text{permeate}} \propto \left(\frac{P_{\text{feed}}}{P_{\text{permeate}}}\right) y_{i,\text{feed}}$$


Module configurations – hollow fiber

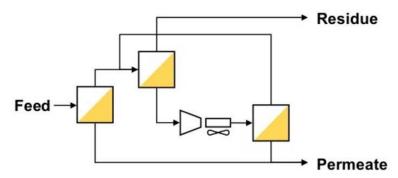
• Approximately 70% of membrane systems are hollow fiber

Low Pressure, Bore-Side Gas Feed Module


Module configurations – spiral wound

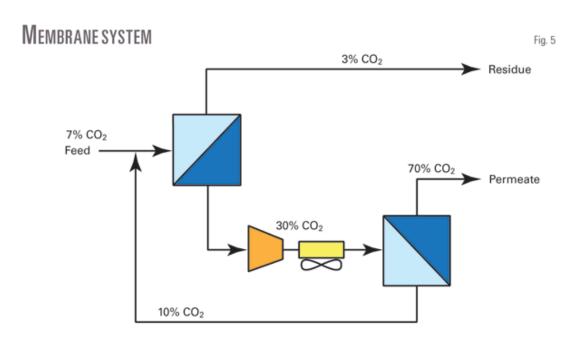

Continued Development of Gas Separation Membranes for Highly Sour Service, Cnop, Dormndt, & schott, UOP

Retrieved March 2016 from http://www.uop.com/?document=uop-continued-development-of-gas-separation-membranes-technical-paper&download=1


Module configurations – spiral wound

Membrane module flow schemes

- No moving parts
- Simple, reliable operation
- Low hydrocarbon recovery


Feed Permeate

- Allows for greater CO2 removal
- High hydrocarbon recovery
- Requires recycle compressor
- Feed with high CO2
- Intermediate hydrocarbon recovery
- Reduced compression

UOP Separex[™] Membrane Technology, UOP, 2009
Retrieved March 2016 from http://www.slideshare.net/hungtv511/uop-separex-membrane-technology

CO₂/CH₄ separation

Two stage process (non-optimized)

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations

Acid gas removal by adsorption (mole sieves)

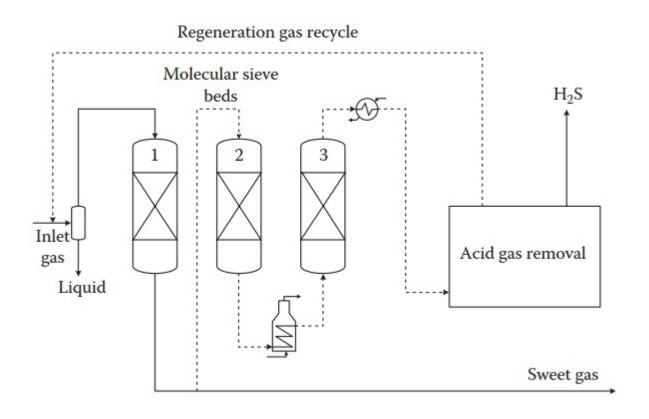


Figure 10.10, Fundamentals of Natural Gas Processing, 2nd ed., Kidnay, Parrish, & McCartney, 2011

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations

Nonregenerable H2S scavengers

Process Phase	Process
Solid-based processes	Iron oxides Zinc oxides
Liquid-based processes	Amine-aldehyde condensates Caustic Aldehydes Oxidizers Metal-oxide slurries

Topics

- Chemical Absorption Processes
- Physical Absorption
- Adsorption
- Cryogenic Fractionation
- Membranes
- Nonregenerable H₂S Scavengers
- Biological Processes
- Safety and Environmental Considerations